
Using speculativeexecution to automatically
hide I/O latency

Fay W. Chang

December 7, 2001
CMU-CS-01-172

School of Computer Science
CarnegieMellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements for
thedegree of Doctor of Philosophy

Thesis Committee:
Garth A. Gibson, Chair

Gregory R. Ganger
Todd C. Mowry

James R. Larus, Microsoft Research

Copyright © 2001 Fay Chang

This research was sponsored by DARPA/ITO through DARPA Order D306, and issued by Indian Head
Division, NSWC under contract N00174-96-0002. Additional support wasprovided by graduatefellowships
from the Office of Naval Research and Intel, and by generouscontributions from the member companies of
the Parallel Data Consortium, including 3Com, Compaq, Data General, EMC, Hewlett-Packard, IBM, Intel,
LSI Logic, Novell, Quantum, Seagate, StorageTek and Wind River Systems. The views and conclusions
contained in this document are those of the author and should not be interpreted as representing the official
policies, either expressed or implied, of any of theseentitiesor of the U.S. Government.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
07 DEC 2001 2. REPORT TYPE

3. DATES COVERED
 00-00-2001 to 00-00-2001

4. TITLE AND SUBTITLE
Using speculative execution to automatically hide I/O latency

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer
Science,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

187

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: Input/output, prefetching, speculative execution, binary modification

Abstract

The gap between processing speeds and disk access times is widening. This trend is caus-
ing applications that must fetch data from disk to spend an increasing proportion of their
execution times stalled on disk I/O. I/O prefetching, a well-known technique for hiding
disk latency, has the potential to alleviate this problem, particularly when the data that
needs to be fetched is distributed across multiple disks. A major hurdle to benefiting from
this technique in practice is the difficulty of generating accurate and timely prefetches. In
this dissertation, I put forth a new approach to generating accurate and timely prefetches
without programmer involvement.

The key to the proposed approach is its unique method for predicting what data an
executing process will access in the future. The approach involves adding an execution of
each target process’s code that exploits spare processing cycles. These added executions
skip some operations, like accesses to uncached data, so that they can run ahead of their
target normal executions. This permits differences between the data values used during
the added speculative executions and their target normal executions. Despite any such
differences, the approach predicts that the data accesses encountered during speculative
executions will often be the same as the data accesses that will be encountered during
their target normal executions such that, by initiating prefetching of that data, speculative
executions could reduce the I/O stall time of their target normal executions.

To investigate the viability of this approach, I developed and evaluated SpecHint, a de-
sign and implementation for applying the approach automatically. SpecHint is based on
binary modification and requires no operating system support specific to this approach.
I evaluated SpecHint using six benchmarks from the TIP benchmark suite. Experiments
demonstrate that, with the file system striped across four disks, SpecHint reduces the
elapsed times of five of the benchmarks (text search, scientific visualization, object linking,
and two database queries) by 24% to 71%, with an average of 53%. Moreover, simulation
experiments suggest that, on future systems, the benefit of SpecHint would not decrease,
and may even increase for some applications.

i

ii

Acknowledgements

I would like to thank my advisor, Garth Gibson, for many years of excellent advice, timely
encouragement, and the many experiences that he helped make possible. I would also like
to thank the other members of my committee, Greg Ganger, Jim Larus and Todd Mowry,
for their helpful comments and questions. Thanks also to Steve Lucco, David Nagle, and
Thomas Gross for their advice in earlier years.

I am grateful to the School of Computer Science community at CMU for providing a
friendly and inspiring environment unlike any other I have known. I was also fortunate to
have been a member of a wonderful lab group, the Parallel Data Lab. Thanks to all the
members of the PDL for their camaraderie over the years. Special thanks to Paul Mazaitis
for keeping my testbed up and running, Jim Zelenka for help with Digital Unix, and Hugo
Patterson and David Rochberg for help with TIP.

Thanks to my friends for laughter, companionship, encouragement, and perspective,
which have helped sustain me throughout this endeavor. And, last but not least, thanks to
my parents and siblings, who have been a bedrock of support throughout my life.

iii

iv

Contents

1 Introduction 1
1.1 The speculative execution approach . 2
1.2 Thesis statement . 3
1.3 Dissertation roadmap . 3

2 Background 7
2.1 The I/O gap problem . 7
2.2 I/O prefetching 9

2.2.1 Potential benefits of prefetching 10
2.2.2 Potential risks of prefetching .. 13
2.2.3 Prefetch scheduling and cache management 14
2.2.4 Predicting future data needs . 17

2.3 Speculative execution . 22
2.4 Other techniques for reducing I/O stall time 24
2.5 Summary . 25

3 The speculative execution approach 27
3.1 The speculative execution approach . 27

3.1.1 Potential advantages . 31
3.1.2 Limitations and disadvantages . 32
3.1.3 Discussion 35

3.2 Developing a design . 37
3.2.1 Design goals . 38
3.2.2 Design alternatives . 38
3.2.3 The SpecHint design and implementation 39

3.3 Summary . 40

4 Design goal: Effectiveness 43
4.1 Designing for effectiveness 43

4.1.1 Resynchronizing speculative and normal execution. 44
4.1.2 Skipping unnecessary work . 46
4.1.3 Increasing the effectiveness of stale values 49
4.1.4 Scheduling amongst speculative executions 51

4.2 Effectiveness in SpecHint. 52

v

vi CONTENTS

4.2.1 Prefetch generation 52
4.2.2 Resynchronization policy. 53
4.2.3 Resynchronization method 54
4.2.4 Experimental slicing . 56
4.2.5 Stale value selection . 57

4.3 Summary . 58

5 Design goal: Low overhead 59
5.1 Designing for low overhead . 59

5.1.1 Processing cycles . 60
5.1.2 Memory . 61
5.1.3 I/O bandwidth . 63
5.1.4 Useless I/O . 64
5.1.5 Discussion . 70

5.2 Limiting overhead in SpecHint .. 71
5.2.1 The speculating thread .. 71
5.2.2 Memory and I/O bandwidth consumption 72
5.2.3 Filtering . 73

5.3 Summary . 74

6 Design goal: Safety 77
6.1 Base safety assumption 77
6.2 Designing for safety. 79

6.2.1 Separate process 79
6.2.2 Shared process, separate thread 81
6.2.3 Shared thread 85

6.3 Safety of SpecHint. 86
6.3.1 Shadow code . 87
6.3.2 Support routines 103

6.4 Summary . 111

7 Experimental setup 113
7.1 Evaluation environment . 113

7.1.1 Prefetch-aware software striper 115
7.2 SpecHint tool and object files . 116

7.2.1 Producing executables .. 116
7.3 Benchmark applications . 118

7.3.1 Agrep . 118
7.3.2 XDataSlice . 119
7.3.3 Gnuld . 120
7.3.4 Postgres . 121
7.3.5 Sphinx . 122

7.4 Summary . 123

CONTENTS vii

8 Evaluation 125
8.1 Single application, naive SpecHint . 125

8.1.1 Overall performance 126
8.1.2 Hinting performance 129
8.1.3 Prefetching performance 131
8.1.4 Caching performance 135
8.1.5 Overhead to normal execution . 137
8.1.6 Performance of speculative execution. 139

8.2 Single application, improving SpecHint effectiveness 141
8.2.1 Minimal updates to execution state 142
8.2.2 Prefetch correctness prediction and filtering 143
8.2.3 Simple value prediction . 146
8.2.4 Experimental slicing . 148
8.2.5 Combining techniques . 148

8.3 Projecting future performance 151
8.4 Concurrent applications .. 154

8.4.1 Impact of decreasing spare processing resources 154
8.4.2 Impact of increasing resource contention 157

8.5 Transformation overhead . 159
8.6 Summary . 161

9 Conclusions 163
9.1 Dissertation summary . 163
9.2 Contributions . 165
9.3 Future work . 165

viii CONTENTS

List of Figures

2.1 Effect of the growing I/O gap on application performance 9
2.2 Potential benefit of I/O prefetching . .. 11

3.1 A simple program . 28
3.2 Potential to improve performance 30
3.3 A simple data-dependent program . 33
3.4 Another data-dependent program . 34
3.5 A program that defies prefetching . .. 36

4.1 Lazy resynchronization policies 47
4.2 Selecting more effective values 50

5.1 Scheduling speculative execution . 61
5.2 Execution path and correctness probability 67
5.3 Incorrect prefetches with a single disk. 68
5.4 Incorrect prefetches with multiple disks 69
5.5 Correctness probability threshhold . .. 70

6.1 Software copy-on-write . 92
6.2 An addressing issue 93
6.3 Modifying a system call in shadow code 97
6.4 Control flow of speculating thread . .. 110

7.1 Evaluation environment . 114
7.2 Using the SpecHint tool to produce speculating executables. 117
7.3 Inlining TIP hint call to manually modify Agrep 119
7.4 Loop distribution to manually modify XDataSlice 120
7.5 Loop inlining and splitting to manually modify Gnuld 121

8.1 Single application performance of the SpecHint design 127
8.2 Hint correctness prediction and filtering 145
8.3 Simple value prediction . 147
8.4 Experimental slicing . 149
8.5 Combined techniques . 150
8.6 Projected performance of speculative execution 152

ix

x LIST OF FIGURES

8.7 Projected performance of speculative execution (cont.) 153
8.8 Concurrent CPU-bound application 155
8.9 Multiple disk-bound applications. 158

List of Tables

2.1 TIP interface . 17

3.1 Time between read calls. 37

6.1 Copy-on-write and stack pointer checks 95

7.1 Summary of benchmarks . 118
7.2 Agrep benchmark: Distribution of data file sizes 119

8.1 Single application performance of the SpecHint design 128
8.2 Hinting performance of the SpecHint design 130
8.3 Prefetching performance of the SpecHint design on one disk 132
8.4 Prefetching performance of the SpecHint design on four disks 133
8.5 Cache performance of the SpecHint design on one disk 135
8.6 Cache performance of the SpecHint design on four disks 136
8.7 CPU and memory performance of normal execution 137
8.8 Performance characteristics of speculative execution 139
8.9 Performance with minimal execution state updates 142
8.10 Hinting performance with filtering . .. 144
8.11 Combined techniques . 151
8.12 CPU load of benchmarks . 156
8.13 Transformation overhead . 160

xi

Chapter 1

Introduction

Many applications often require data that is too large or too infrequently used to be found
in memory. Examples of such applications range from common utility programs (like text
search or file archiving tools), to database and data mining applications, to a wide variety
of scientific and engineering applications. In order to access their data, these applications
often issue large numbers of disk requests. Unfortunately, because disks are much slower
than processors, these applications often end up wasting a substantial fraction of their ex-
ecution times waiting for disk requests to complete. Moreover, since the rate at which
disks can satisfy requests is increasing slowly relative to increases in processing speeds,
this performance problem is expected to worsen.

One way to address thisI/O gap problemis I/O prefetching. Rather than fetching data
from disk on demand (i.e. only after an application has attempted to access the data),
I/O prefetching involves fetching data from disk in anticipation of an upcoming attempt to
access the data. The potential benefit of an I/O prefetch is that, if the anticipated attempt
occurs, then the prefetch will have hidden some or all of the time it takes to fetch that data
from disk, so the accessing application will waste less time stalled on I/O.

Prior research has demonstrated that, by reducing I/O stall time, I/O prefetching can
dramatically improve the performance of a wide range of I/O-intensive applications. In
practice, however, it can be difficult to extract such improvements. On one hand, I/O
prefetching will yield little or no benefit if too little data is prefetched, or data is prefetched
too late, to hide much disk fetch time. On the other hand, if the wrong data is prefetched, or
data is prefetched prematurely, then I/O prefetching can degrade rather than improve per-
formance. In particular, since I/O prefetching consumes disk bandwidth, a prefetch could
delay other disk requests. Also, since I/O prefetching consumes memory to buffer the
prefetched data, a prefetch could cause useful data to be evicted from memory prematurely,
so that additional I/O requests are required to fetch that data back into memory. Therefore,
prefetching effectively requires both accurate and timely identification of what data will be
accessed when.

One approach to obtaining accurate and timely prefetching information is for program-
mers to implement or modify applications such that, when executed, the applications will
issue prefetching calls specifying this information. However, this manual approach can re-

1

2 CHAPTER 1. INTRODUCTION

quire a substantial amount of programming and debugging effort. Furthermore, a program-
mer could modify an existing application only if the application’s source code is available.
Consequently, in practice, very few applications are implemented or subsequently modified
to provide such information.

Therefore, a more realistic approach would be to somehow extract prefetching infor-
mation automatically. Unfortunately, while a variety of automatic approaches have been
proposed, there are many applications that cannot be handled by any of the existing ap-
proaches. Existing approaches fall in one of three categories: pattern-based approaches,
history-based approaches, and static analysis approaches.Common access pattern ap-
proachesgenerate prefetches according to some fixed set of pre-identified access patterns.
These approaches can be very effective for applications whose data accesses conform to
one of their pre-identified patterns, but cannot improve the performance of other applica-
tions. History-based approachesgenerate prefetches based on observing the sequence of
prior data accesses. These approaches may be effective for prefetching a previously ob-
served sequence of data accesses, but will not, for example, be able to generate accurate
prefetches for an access sequence that differs greatly from any which have previously been
observed. For this and other reasons, history-based approaches tend to be ineffective for
applications whose data accesses depend on inputs that usually vary from run to run. Fi-
nally, in static analysis approaches, a compiler (or other tool) adds prefetching calls to
an application based on pre-runtime analysis of the application’s source code. These ap-
proaches are limited by the compiler’s ability to transform an application such that data
will be prefetched substantially in advance of when the application will attempt to access
it, an ability which is hampered by the dependence of applications on data values that are
determined only during their execution. The difficulty of accomplishing this has thus far
constrained static analysis approaches to looping array codes.

This dissertation puts forth a new approach to automating the extraction of I/O prefetch-
ing information called thespeculative execution approach. This approach exploits tech-
nology trends, which are providing an increasing abundance of processing and memory
resources, to avoid many of the disadvantages of previously existing approaches. In partic-
ular, unlike common access pattern approaches, it is capable of prefetching arbitrary access
sequences. Unlike history-based approaches, it is capable of prefetching access sequences
that have never previously been observed. And, unlike static analysis approaches, it does
not require any sophisticated pre-runtime analyses.

1.1 The speculative execution approach

An execution isspeculativeif it depends on one or more possibly incorrect data values,
and may therefore be inaccurate. Most processors perform speculative execution to more
efficiently handle conditional branch instructions and other sources of pipeline stall. This
dissertation advocates performing software-level speculative execution to reduce I/O stall
time.

Specifically, this dissertation proposes that, to generate I/O prefetches for an executing

1.2. THESIS STATEMENT 3

application, we should add a new execution of that application’s code. This added execution
should run ahead of the application’snormal (i.e. non-speculative) execution by skipping
some operations, like attempts to access data that is not in memory. Skipping these op-
erations will probably cause the added execution to use some data values that differ from
the data values that will be used during the normal execution. The fundamental hypothesis
behind the speculative execution approach is that, despite these incorrect data values, the
data accesses encountered during the added speculative execution will often be the same as
the data accesses that will occur during subsequent normal execution. Thus, whenever the
speculative execution encounters an access to data that is not in memory, it may be able to
reduce the normal execution’s I/O stall time by issuing a prefetch for that data.

For the speculative execution approach to be successful, it is not sufficient for specu-
lative execution to be capable of generating accurate prefetches for the data that will be
accessed during subsequent normal execution. It is also necessary that speculative execu-
tion generate these prefetches early enough to hide a substantial amount of disk fetch time.
In order to accomplish this, speculative executions must be provided with an adequate and
timely amount of processing, memory and I/O resources. Therefore, the approach is also
based on a second hypothesis that there are/will be sufficient resources on current/future
systems for this purpose.

Finally, a number of factors will affect the practicality of the approach. For exam-
ple, since programmer time is an expensive commodity, there needs to be a way to add
speculative executions automatically. As another example, since people are unlikely to
use an approach that causes their applications to produce erroneous results or otherwise
malfunction, there should be a way to add speculative executions that will not cause such
malfunctions.

1.2 Thesis statement

My thesis is that:

� For a wide range of applications, speculative execution of the application’s code
could be leveraged to accurately predict what data the application will access in the
future early enough for I/O prefetching to provide substantial performance benefits.

� For a wide range of applications, such speculative execution could be added auto-
matically in a manner that will not cause the application to malfunction.

1.3 Dissertation roadmap

This dissertation raises and answers several basic questions. Can speculative execution of
an application’s code generate accurate predictions of what data will be accessed by the
application? What limits the ability of speculative execution to generate accurate predic-
tions? What resources are needed by speculative execution to generate these predictions
early enough for effective prefetching? Are these resource needs reasonable on current and

4 CHAPTER 1. INTRODUCTION

future systems? How can adding speculating executions change the behavior of a system?
Can we automate the addition of speculative executions in a manner that will not cause
applications to malfunction? Can such a design for adding speculative executions deliver
substantial performance benefits for real-world applications? To what degree can this ap-
proach automatically deliver the potential performance benefits of I/O prefetching? And,
relative to prior approaches to automating I/O prefetching, what are the advantages and
disadvantages of the speculative execution approach?

To answer these questions, the dissertation discusses the advantages and limitations of
this approach to automatically generating I/O prefetches. It also discusses the major issues
and tradeoffs in developing a design for automatically adding speculative executions. Inter-
linked with this discussion, the dissertation provides an in-depth investigation ofSpecHint,
a particular design and implementation. Finally, the dissertation describes an evaluation of
SpecHint using five, real-world data-intensive applications. This evaluation demonstrates
the strengths and weaknesses of the speculative execution approach and the SpecHint de-
sign and implementation.

This dissertation demonstrates that we can automate the speculative execution approach
in a manner that is guaranteed to cause no malfunctions for a wide range of applications.
The discussions argue and the evaluation affirms that speculative execution is capable of
extracting accurate I/O prefetching information, and that the resources needed to perform
speculative execution should be reasonable on both current and future systems. The dis-
sertation also argues and affirms that the degree to which the speculative execution ap-
proach will be successful is highly application-dependent. In particular, it can be lim-
ited by application-specific dependencies of normal execution on data that is not available
during speculative execution and/or by application-specific resource requirements for ef-
fective speculative execution. The evaluation demonstrates that the speculative execution
approach, and the SpecHint design and implementation in particular, can produce impres-
sive performance benefits on a variety of real-world applications. In addition, a simulation
experiment indicates that, if current technology trends continue, then these benefits should
not decrease, and may even increase for some applications, on future systems. The eval-
uation also demonstrates that the approach can sometimes deliver benefits comparable to
those that could be obtained by manually modifying applications to issue prefetch calls.

The rest of this dissertation is organized as follows. In Chapter 2, I describe the trends
which motivate this work and provide background material on I/O prefetching. I then
describe and contrast my approach to prior approaches to automating I/O prefetching, and
prior uses of speculative execution.

In Chapter 3, I describe the speculative execution approach in greater detail, discussing
its potential advantages and disadvantages relative to prior approaches. I also describe the
factors which can limit the success of this approach and reason that these factors will not
prevent the approach from providing substantial benefits in many interesting situations. I
then set the framework for the design discussion in the next three chapters. In particular,
I discuss the three basic goals that should be shared by any design for adding speculative
execution, sketch out a few possible designs, argue that no single design will be ideal in

1.3. DISSERTATION ROADMAP 5

all situations, and introduce the SpecHint design (the design I developed and implemented
in the course of this dissertation work in order to investigate the speculative execution
approach).

In Chapters 4, 5 and 6, I describe the major design issues related to each of the three
basic design goals. Chapter 4 focuses on effectiveness, the ability of a design to extract
timely and accurate prefetching information. Chapter 5 focuses on low overhead, where
overhead is defined to be an increase in the elapsed time of a normal execution. Chapter 6
focuses on safety, the degree to which a design ensures that it will not cause applications to
malfunction. Each chapter is split into two sections. The first section describes the issues
that should be considered in developing a design for adding speculative execution. The
second section describes how these issues are addressed in the context of the SpecHint
design and implementation.

In Chapter 7, I describe my experimental testbed and the benchmarks I use to evaluate
the SpecHint design and implementation. This includes a discussion of how much effort
was needed to manually modify the benchmark applications to perform explicit prefetching.
In Chapter 8, I describe my evaluation of the SpecHint design and implementation.

Chapter 9 concludes the dissertation with a summary of its key contributions. The
chapter also includes some possible avenues for further research stemming from this work.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter, I describe the problem that motivates this dissertation work, prior attempts
to address this problem, and the reasons why further work is required. Section 2.1 begins by
quantifying the huge and growing gap between processing speeds and disk access times. It
provides background material to explain why the gap is expected to continue growing, and
presents a simple example to illustrate how this growing gap creates a serious performance
problem. One way to address thisI/O gap problemis to apply a well-known technique for
hiding disk access times called I/O prefetching. Section 2.2 begins by describing how I/O
prefetching can improve performance dramatically. It then explains why I/O prefetching is
a difficult technique to apply successfully. Next, it describes previous work on I/O prefetch-
ing and why that work is not always sufficient. This dissertation explores a new approach
to I/O prefetching based on a technique called speculative execution. Section 2.3 describes
the ways speculative execution has been used in the past and how they differ fundamentally
from the approach explored in this dissertation. Finally, Section 2.4 briefly discusses other
ways of addressing the I/O gap problem.

2.1 The I/O gap problem

Purchase a new desktop computer today, and its processor speed will probably range from
1 to 2 GHz.1. In contrast, the average time it takes to retrieve a modest amount of data from
disk ranges from 5.6 to 12.6 ms.2 In other words, the average disk access time on a new
system will probably be equivalent to more than 6 million processing cycles. Therefore, an
application that needs to wait for data to be retrieved from disk will progress much slower
than it otherwise could. Even worse, this gap between processing speeds and disk access
times is widening. While processor speeds are increasing at an impressive rate of 58% a
year [20], disk access rates are only increasing at about 8% a year [18].

1This range comes from the offerings atwww.dell.comandwww.compaq.comas of December 1, 2001
2This range comes from the offerings atwww.seagate.comand www.quantum.comas of December 1,

2001.

7

8 CHAPTER 2. BACKGROUND

To understand why such a huge gap exists, and why it is expected to continue growing,
it is helpful to have a basic understanding of how disks work. A disk drive contains a
controller, some buffer memory, a stack of disk platters mounted on a central spindle that
rotates at some rate (thespindle speed), and a set of disk heads (one for each side of each
platter) mounted on an actuator assembly. Data is stored on both sides of each platter in
concentric tracks, and the actuator assembly can pivot to position a head over any track.
When the controller receives a request for some data, it first checks to see whether that
data is in the disk’s buffer memory. If so, the controller can begin transferring the data to
main memory immediately. Otherwise, the time it takes to service the request (disk access
time) is the sum of a relatively negligible amount of controller overhead time plus the time
to pivot the actuator assembly such that a head is positioned over the track where the data
resides (seek time), the delay before the data begins rotating beneath that head (rotational
latency), and the time it takes for all of the requested data to pass beneath the head so that
it can be read (transfer time). Disk transfer rates have been improving at a respectable
40% a year, largely due to 30% per year improvements in linear density (the density of
bits on a track) [18]. However, most disk requests are small enough that disk access times
are dominated bypositioning times(the combination of seek times and rotational latency)
rather than transfer time. Unfortunately, as just described, positioning times depend on
mechanical technology, which is slower and improves much less rapidly than the solid-state
technology that makes up processors, memory and most other components of computer
systems.

To illustrate how the widening gap between processing speeds and disk access times can
affect application performance, consider a hypothetical single-threaded application that, on
a current system, spends twice as much time processing as waiting for data to be retrieved
from disk. Assume that (in accordance with current trends) the processor speed increases by
58% per year, and the disk access rate increases by 8% per year. Each year, in accordance
with Amdahl’s Law3, the application’s elapsed time will decrease by smaller amounts as
it spends an increasing proportion of its time stalled on I/O. Figure 2.1 shows both the
decrease in elapsed time and the fraction of the new elapsed time that will be spent stalled
on I/O, for ten years of annual upgrades. Notice that, after only the second yearly upgrade,
the application will be spending more than half of its time stalled on I/O and, after only the
eighth yearly upgrade, the application will be spending more than 90% of its time stalled on
I/O. Moreover, with the eighth yearly upgrade, the application’s elapsed time will decrease
by only 11%. In contrast, the elapsed time of an application which performs no I/O would
decrease by 58% with each year’s upgrade. This example highlights how the widening gap
between processor and disk access speeds will hamper the performance of applications that
need to access data on disk, causing them to be increasingly disk-bound and increasingly
incapable of deriving benefit from advances in processor technology.

The simplified example in the last paragraph ignores possible effects of other trends
in computing systems. For example, it has been predicted that increasing memory sizes

3A generalized restatement of Amdahl’s Law is that the performance improvement which can be obtained
from some faster mode of execution is limited by the fraction of time that the faster mode is used.

2.2. I/O PREFETCHING 9

0 1 2 3 4 5 6 7 8 9 10
Year

0

10

20

30

40

50

60

70

80

90

100

% of elapsed time stalled on I/O
% improvement in elapsed time

Figure 2.1: Effect of the growing gap between processor speeds and disk access times on the per-
formance of a hypothetical single-threaded application that currently spends twice as much time
processing as waiting for disk reads to complete. This graph assumes that, each year, the processor
speed increases by 58%, and the disk access rate increases by 8%.

would obviate concern about disk access times by greatly decreasing the percentage of
data requests that would require disk access (i.e. themiss rate). Several file trace studies
have not upheld this predictions, however. In particular, file trace studies from 1985 [39],
1991 [2] and 1999 [65] reported very similar miss rates (approximately 40%), despite the
passage of 14 years and the corresponding increase in memory sizes on the traced machines.
Although these particular studies were conducted in different computing environments (the
BSD, Sprite [38] and NT file systems, respectively), and are not representative of all user
communities, they indicate that increasing memory sizes will not automatically hide the
performance impact of disk access times. This argues that there will be a growing need for
techniques that will explicitly address the I/O gap problem.

2.2 I/O prefetching

Prefetching is a well-known technique for hiding data access latency. Prefetching involves
fetching some data from a higher-latency locale to a lower-latency locale (from main mem-
ory to processor caches, for example) before the data is accessed. Prefetching can improve

10 CHAPTER 2. BACKGROUND

performance if prefetched data is subsequently accessed by allowing these accesses to ex-
perience only the lower latency. A conceptually simple idea, prefetching is complicated
by resource constraints. For example, prefetching consumes bandwidth to transfer the data
between the higher and lower latency locales, and buffer space in the lower latency locale
to hold the data in anticipation of a subsequent access. Since there are typically competing
ways to use these limited resources, prefetching can inadvertently harm rather than help
performance.

In this dissertation, I/O prefetching refers to prefetching data from magnetic disks to
main memory. Section 2.2.1 shows why I/O prefetching is an appealing technique by de-
scribing its potential to produce dramatic performance improvements. Section 2.2.2 shows
why I/O prefetching should only be used carefully by describing how I/O prefetching can
hurt performance. The challenge with leveraging I/O prefetching is how to extract some
of the potential performance improvements described in Section 2.2.1 rather than inadver-
tently hurting performance as described in Section 2.2.2. Previous research [42, 3] has
demonstrated that this problem can be subdivided into two parts: 1) figuring out what data
will be accessed when, and 2) assuming the former, figuring out when to prefetch what,
and what to eject from memory whenever space is needed (e.g. to hold newly fetched
data). This dissertation focuses on the first part of the problem, leveraging prior work that
addresses the second part of the problem. Section 2.2.3 summarizes the issues and prior
work on addressing the second part of the problem. Section 2.2.4 discusses prior work on
the first part of the problem, and why it is not sufficient.

2.2.1 Potential benefits of prefetching

I/O prefetching improves performance by hiding disk access times from applications. In
particular, if an application attempts to access some data while it is being prefetched, then
the application will experience only the remaining disk access time. Even better, if an
application attempts to access some data after it has been prefetched, while the data is still
in memory (i.e. stillcached), then all of the disk access time will be hidden from the
application.

To illustrate the extent to which I/O prefetching can improve application performance,
consider a hypothetical application that processes forP time units between each ofN
calls to read data that is not cached when the application begins executing. For simplicity,
assume that there are no other executing applications, and that the time it takes for a disk
to service an I/O request is fixed atTdisk time units.

First, consider the case in which all the application’s data resides on a single disk. Each
of the application’s read calls will trigger an I/O request. Therefore, the application will
alternate between processing and stalling on the disk, as shown in Figure 2.2A, and the ap-
plication’s total execution time will beN(P +Tdisk) time units. To determine the potential
benefit of prefetching, assume that, as soon as the application begins executing, a prefetch
is issued for the data specified by each of the application’sN read calls.4 In this sce-

4If an application’s data can be prefetched before the application begins executing, then the potential

2.2. I/O PREFETCHING 11

P
diskT

P
diskT

P
diskT

P
diskT

P
diskT
diskT

PP
diskT

diskT

P

diskT
diskT

diskT
diskT

diskT
diskT
P

T

P

PP PP

P
diskT

Prefetching:

(A) No prefetching
CPU

Disk(s)

CPU
Disk

 (B) 1 disk

CPU
Disk 1

 (D) N disks

CPU
 (C) 2 disks

Disk 1
Disk 2

Disk 2
Disk 3
Disk 4
Disk 5

Time

disk disk disk diskdisk
P P P P P

T T T T

Figure 2.2: This figure illustrates the potential benefit of I/O prefetching. The hypothetical applica-
tion issuesN read calls for uncached data, processing forP cycles between read calls. (A) With no
prefetching, the application will takeN(P + Tdisk) time units to execute, regardless of the number
of disks. To show the potential benefit of prefetching, assume that prefetches are issued for all the
data specified in the application’s read calls as soon as the application begins executing. (B) With a
single disk, the prefetches can be overlapped with computation. (C) With multiple disks, the poten-
tial performance improvement is much larger because, in addition to overlapping prefetching with
computation, it may be possible to concurrently service multiple prefetches.

nario, when the application begins executing, the disk will begin servicing the first prefetch
immediately and will then proceed to service the remaining prefetches one after another.
Therefore, as shown in Figure 2.2B, the performance of the application will be improved
because the I/O system will fetch the application’s data in parallel with the application’s
processing. Specifically, prefetching will be able to decrease the application’s execution
time to the greater ofNP andNTdisk, i.e. by as much as a half.

Even greater performance improvements are possible if an application’s data is spread
across multiple disks. To illustrate this, reconsider the same application but assume that the
application’s data is spread acrossD (�N) disks such that each call in a sequence ofD read
calls specifies data on a different disk. If no prefetches are issued, each of the application’s
read calls will trigger an I/O request. Therefore, the application’s execution time will be
exactly as it was with a single disk (i.e. Figure 2.2A still applies). If, instead, we assume
that prefetches are issued as described in the last paragraph then, when the application
begins executing, each of theD disks will begin servicing prefetches. Therefore, as shown

benefit of prefetching may be even greater. This is one advantage of dynamic history-based prefetching
approaches, which are discussed in Section 2.2.4.2.

12 CHAPTER 2. BACKGROUND

in Figure 2.2C, the I/O system will serviceD prefetches in parallel with one another, as
well as with the the application’s processing. This will allow the application’s execution
time to be decreased to:

8><
>:

N � P for P � Tdisk
Tdisk + (N � 1) � P for Tdisk � P � Tdisk=D
dN=De � Tdisk + ((D � 1)modN) � P for P < Tdisk=D

Therefore, for example, for an application whose data is spread over many disks (i.e.
D � 10) and which performs little processing between read requests (i.e.P << Tdisk),
reductions in execution time of 90% or more are plausible.

In addition to showing that the potential benefits of prefetching can be dramatic, the
preceding example highlights both how prefetches can allow applications to exploit multi-
disk I/O systems more fully and, conversely, how multi-disk I/O systems enable prefetching
to be more effective. In particular, since read requests are blocking, a single-threaded
application can only have one I/O request outstanding at any time. Moreover, the vast
majority of read requests are of a modest size such that the data specified by a single request
does not span multiple disks. Therefore, as illustrated in Figure 2.2A, a single-threaded
application executing by itself is unlikely to derive substantial performance benefit from
having its data distributed across multiple disks because it will never exercise more than
one disk at a time. In contrast, prefetching on behalf of an application will increase the
frequency with which there are multiple I/O requests outstanding at the same time. If data
is well-distributed across multiple disks (where striping [47] generally suffices to produce
such a distribution), it is likely that different requests can often be serviced in parallel
by multiple disks. Therefore, prefetching increases the degree to which applications can
exploit multiple disks.

Conversely, as described above, if an application’s processing time between disk re-
quests is less than the disk access time – which, even if not true today, will be increasingly
likely given the widening gap between processing speeds and disk access times – then the
benefit of prefetching will be limited by the number of disks. For example, from the dis-
cussion above, for an application in whichP is only 10% ofTdisk, the maximum potential
decrease in the application’s execution time is only about 9% if the data resides on a single
disk. However, assuming that the application issues 20 read requests, the maximum po-
tential decrease in the application’s execution time is 54% if the data resides on two disks,
76% if the data resides on four disks, and 87% if the data resides on ten disks. Notice that
prefetching cannot decrease the total amount of data that must be fetched from disk. It can
improve performance only by fetching that data earlier than it would otherwise be fetched.
Therefore, prefetching may not be able to improve the performance of a multi-threaded
application or a multi-tasking system that already fully utilizes the I/O system (i.e. keeps
all disks busy at all times) because causing some data to be fetched earlier would simply
result in other data being fetched later.

The benefit of prefetching can actually be somewhat greater than described in the pre-
ceding discussion. In focusing on how prefetching can hide disk access times from appli-
cations, the preceding discussion ignored two ways that prefetching can improve perfor-

2.2. I/O PREFETCHING 13

mance by reducing the aggregate time to fetch the necessary data from disk. The first of
these leverages the fact that disks can reorder queued requests to decrease their positioning
times using any of a variety of disk scheduling algorithms [14]. As discussed above, a
typical single-threaded application executing by itself will not benefit from disk scheduling
because there will never be more than one request queued at any time. By increasing the
depth of disk queues, prefetching increases the potential for a reordering of those requests
that will reduce their positioning times. The second of these targets the fact that there is a
cost to issuing a request to the I/O system. Since prefetches, unlike demand fetches, are not
blocking, it is reasonable to accumulate multiple prefetches, batching them into a single
request to the driver in order to reduce driver overhead [43]. Finally, although not consid-
ered in this dissertation, I/O prefetching can also improve performance in terms of energy
consumption. In particular, by batching I/O requests more closely in time, prefetching can
reduce the number of disk spin ups and/or how long disks are powered.

2.2.2 Potential risks of prefetching

While the potential benefits of I/O prefetching are large, prefetching can also hurt appli-
cation performance as a side effect of increasing contention for a limited resource. This
is particularly likely when a prefetch consumes resources without any possible benefit be-
cause the prefetched data is not subsequently accessed. There are two primary ways in
which a prefetch can hurt application performance.

First, a prefetch can occupy an actuator assembly, delaying demand requests. Current
disks are not preemptive; if a demand request is issued to a disk while a prefetch is be-
ing serviced, the demand request will not be serviced until the prefetch has completed.
Furthermore, current disks cannot differentiate between prefetch requests and demand re-
quests; once a prefetch is issued to a disk, the disk will schedule it no differently than a
demand request. If a disk reorders queued requests to reduce aggregate positioning time, it
may even reorder a demand request behind a subsequently issued prefetch request. Notice
that these hardware limitations make it impossible for any software prefetching scheme
to guarantee that it will never hurt performance (unless it can determine when demand
fetches will occur, so that it can appropriately limit its activity). One heuristic for bounding
the consequences of these hardware limitations is to modify operating systems and device
drivers such that they allow a prefetch request to be issued to a disk only when there is at
most one request (demand or prefetch) already queued at the disk [43].

Second, since prefetched data competes for space in main memory, applications may
end up issuing more I/O requests, and experiencing more I/O latency, to access their data
than if no prefetching had occurred. Before a prefetch is issued to disk, space must be
reserved in memory to hold the data that will be read from disk. Unless there is sufficient
unused memory, reserving this space will require ejecting some data from memory. In
addition, until the prefetched data is accessed or ejected from memory, it will occupy space
that would otherwise have been available to hold some other data. By shrinking the pool of
memory from which space is reserved for subsequently fetched data, prefetched data will

14 CHAPTER 2. BACKGROUND

indirectly cause the ejection of data that would have otherwise remained in memory. In
either case, if the data that is ejected from memory due to a prefetch have been accessed
before it was ejected had the prefetch not taken place, then the prefetch will cause that
subsequent access to require an I/O that would have been unnecessary had the prefetch not
occurred.

2.2.3 Prefetch scheduling and cache management

If an application writer wishes to improve the performance of an application by modifying
the application such that it issues I/O prefetches for the data it will subsequently access,
the mechanisms offered by current operating systems are poorly suited to the task [42].
In particular, the most suitable mechanism offered by most current operating systems is
an asynchronous read call. Asynchronous read calls are a poor prefetching mechanism
because issuing such a call causes the operating system to immediately allocate space in
memory, and issue a disk request, for any uncached data specified by the call. This presents
the application writer with a difficult optimization problem because a particular placement
of asynchronous calls in the application which substantially improves performance in one
execution environment may be harmful in another. For example, a placement that im-
proves the application’s performance when the application is executed on a machine with
a certain amount of memory may hurt performance on a machine with less memory be-
cause (as described in the previous section) contending for a smaller pool of memory could
result in the prefetches causing useful data to be ejected from memory such that the ap-
plication ends up spending more time stalled on I/O. The same effect could appear even
when re-executing the application on the original machine if, during the re-execution, there
are concurrently executing applications competing for space in memory. To address this
problem, researchers [42, 5] have argued for a separation between exposing what data will
be accessed in the future, and allocating shared machine resources in an attempt to derive
benefit from that information. Exposing future data accesses will be discussed further in
the next section. This section focuses on how a system might manage its I/O and memory
resources, given at least partial information about what data will be accessed in the future.

Given some such information, the two main policies that the system can control in striv-
ing to extract the greatest benefit from this information are: 1) the prefetch scheduling pol-
icy, i.e. when to initiate a prefetch for some data (which typically requires pre-allocating
sufficient memory to hold that data before issuing a disk read request), and 2) the cache
ejection policy, i.e. what to eject from memory whenever more space needs to be allocated
(to satisfy a demand or prefetch request). The challenge in developing a prefetch schedul-
ing policy is how to schedule prefetches such that they are early enough to hide I/O latency
entirely, while recognizing when prefetches should be issued later in order to avoid causing
ejections from memory that would end up hurting performance. The challenge in develop-
ing a cache ejection policy is how to identify what data in memory can be ejected with the
least performance penalty.

As discussed above, current operating systems schedule prefetches as if they were de-

2.2. I/O PREFETCHING 15

mand fetches, i.e. without considering what data they cause to be ejected from memory.
The cache ejection policy used by most operating systems approximates the least recently
used (LRU) policy. With LRU, when the system needs another cache block, it will eject the
data which has not been accessed for the longest time. This policy exploits temporal local-
ity in data accesses (the observation that, in general, data that has been accessed recently
is likely to be accessed in the near future) and, while a mismatch for some access patterns,
is known to be fairly effective in general. Prior work [43, 3, 4, 24, 62] has proposed a
variety of algorithms for leveraging more explicit information about what data will be ac-
cessed in the future. Because the system implemented and evaluated in this dissertation
takes advantage of TIP2 [43], the rest of this section focuses on TIP2, hereafter referred to
simply as “TIP”. In particular, Section 2.2.3.1 briefly describes TIP, and then discusses its
weaknesses, and how these affect the work described in this dissertation.

2.2.3.1 TIP

The TIP informed prefetching and caching system [43, 41] is an operating system exten-
sion that enables processes to indicate what data they will access in the future and, based
on this information, attempts to optimize usage of the buffers allotted to the file cache.
Specifically, TIP allows each process to generate (by issuing system calls) a single stream
of disclosure hints, where each disclosure hint specifies some file data. TIP incorporates a
system performance model that allows it to estimate, for each hint, the benefit of prefetch-
ing the data specified by that hint at any given time. TIP also uses the model to estimate
the cost of ejecting data from thehinted cache, which consists of the buffers in the cache
which contain data that is specified by a hint, and the cost of shrinking theLRU cache,
which consists of all other buffers in the cache. The latter estimate also depends on a dy-
namic prediction, derived by observing the stream of file accesses on the system, of how
the hit rate of the LRU cache would change if the size of the LRU cache were changed.
TIP keeps track of the hint for uncached, unprefetched data that has the largest estimated
benefit, and issues the corresponding prefetch once that estimated benefit is larger than the
estimated cost of taking the appropriate number of buffers from the hinted cached and/or
the LRU cache.

Prior work [41] has demonstrated that TIP can dramatically reduce the execution times
of I/O-intensive applications that issue appropriate disclosure hints. For example, it was
demonstrated that TIP can reduce the elapsed times of six real-world, I/O-intensive bench-
marks executed on a four-disk system by 12% to 72%. However, to obtain these results, it
was necessary to manually modify the source code of the benchmark applications so that
they would issue appropriate disclosure hints.

Assuming that processes somehow issue disclosure hints, the performance of TIP hinges
on the assumptions which underly its system performance model. The most questionable
of these assumptions are that: 1) the system supports an infinite amount of I/O parallelism,
and 2) a process’s hint stream exactly specifies the data that the process will access in the
future, in the order that the process will access that data. Two other assumptions in TIP are
also questionable. First, TIP assumes that, once prefetched data is no longer specified by

16 CHAPTER 2. BACKGROUND

any hints, it should simply be added to the tail of the LRU cache’s LRU queue. Second, TIP
enables processes to cancel hints, but assumes that the underlying system does not allow
TIP to cancel prefetches.

TIP’s assumption that the system supports an infinite amount of I/O parallelism has
several consequences. One is that TIP issues prefetches assuming that prefetch requests
will never delay demand requests (which is not the case on current systems for the reasons
discussed in Sections 2.2.2 and 2.2.3). In evaluations of the TIP system, this behavior
was approximated by a prefetch-aware software striper (described in Section 7.1.1). The
assumption of infinite amounts of I/O parallelism also has two consequences that cannot
be addressed simply by modifying the systems underneath TIP. First, TIP may not issue
prefetches early enough to hide I/O latency completely when there is contention for I/O
resources (i.e. if disks have demand requests or other prefetch requests queued). Second,
TIP is not capable of exploiting variations in fetch time to hide more I/O latency. For
example, assume that data blockA is on a lightly loaded disk while data blockB is on a
heavily loaded disk, so that it would take a much longer time to fetchB from disk than to
fetchA from disk. Assume there is a single hint stream, in whichA is beforeB. In this
situation, the optimum performance may be achieved by ejectingA to initiate a prefetch for
B (possibly initiating a prefetch forA at a later time) because, due to the variation in fetch
times, the amount of I/O latency that will be hidden by initiating the prefetch forB earlier
is greater than the amount of I/O latency that will be added by re-fetchingA at a later time.
Since TIP’s system performance model does not consider variations in fetch time, it will
miss this opportunity.5

Unsurprisingly, TIP may make suboptimal prefetching and caching decisions if the hint
stream contains incorrect or mis-ordered hints, or is missing hints. In addition, the imple-
mentation of TIP makes it possible for incorrect or mis-ordered hints to prevent the process
from benefiting from subsequent hints. In particular, there are only two ways to remove
a hint from a hint queue; a hint will be removed from its hint queue if the corresponding
process issues a matching read request when the hint is at the head of its queue, or if the
hint is explicitly cancelled. The estimated benefit of prefetching the data specified by a
hint, however, is dependent on the hint’s position in its hint queue. Therefore, incorrect
or mis-ordered hints need to be explicitly cancelled for the benefit of subsequent hints in
the same hint stream to be correctly estimated. If incorrect or mis-ordered hints are not
cancelled, TIP will eventually stop prefetching on behalf of the corresponding process.

Adding prefetched data that is no longer hinted to the tail of the LRU queue may not
be optimal because the lack of a hint may be an implicit hint that the data will not be
reaccessed. For example, consider a fully hinted process that rapidly streams through a
large amount of data (i.e. it never re-accesses data). TIP will add this prefetched data to the
LRU queue right after the process accesses it. If no other process accesses this data, then
the data will consume space in the cache while it moves through the LRU queue, without
providing any value.6

5Subsequent research [24, 62] has proposed solutions to this problem.
6Subsequent research [62, 8] has proposed solutions to this problem.

2.2. I/O PREFETCHING 17

Finally, never revoking prefetches is suboptimal because the estimated benefits and
costs of prefetching and ejecting different data from the cache changes dynamically. As a
simple example, if a hint is cancelled after a prefetch has been issued for the hinted data,
then (as far as the system can determine) there is no benefit to prefetching that data. It
may be possible to improve performance by choosing a different use for the cache space
pre-allocated for that data, or simply by not wasting I/O bandwidth.

As mentioned earlier, the system that I implemented and evaluated in this dissertation
work uses TIP. Notice that these shortcomings of TIP can only cause the benefit of my
system to be under-estimated relative to an application that does not provide any informa-
tion about what data will be accessed in the future. Chapter 5 includes a proposal for how
to alleviate the effect of sometimes providing imperfect information (which is evaluated in
Chapter 8). TIP’s need for explicit cancellation of incorrect and misordered hints is handled
by my design and implementation, as described in Chapter 4.

Table 2.1 shows the calls in the TIP interface that were used by my system. In particular,
there are two ways to provide a disclosure hint, and a single call which explicitly cancels all
hints in the calling process’s hint queue. These calls do not produce any application-level
side-effects – they do not, for example, update file pointers – so inserting them into an ap-
plication can affect only the performance of the application (not its output). This increases
the usability of the interface because it guarantees that (assuming the implementation of
TIP is bug-free) no regression testing (or correctness debugging) will be necessary when-
ever these calls are added to/moved in/removed from an application. (Of course, after any
such change, the programmer may wish to do some performance debugging.)

Ioctl Arguments Description
TIPIO FD SEG file descriptor, offset, length disclosure hint
TIPIO SEG file name, offset, length disclosure hint
TIPIO CANCEL ALL (none) cancel all hints queued for this process

Table 2.1: Calls in the TIP interface used by my implementation. These calls do not produce any
side-effects (like updating file pointers) that restrict how they should be called in an application. I
added TIPIOCANCEL ALL to the original TIP interface to increase the efficiency of hint cancel-
lation. (The original interface only allowed the cancellation of a single hint at a time.)

2.2.4 Predicting future data needs

In order to take advantage of any of the algorithms described in the last section, it is nec-
essary to provide information about what data will be accessed in the future. This section
discusses prior approaches to extracting such information, and the shortcomings of those
approaches.

Perhaps the most obvious approach to exposing this information is to have program-
mers modify application source code such that it explicitly provides this information, e.g.
by issuing the hint calls shown in Table 2.1. To accomplish this, the programmer needs

18 CHAPTER 2. BACKGROUND

to understand how an application determines what data it will access. The programmer
also needs to identify how to modify the application such that it will provide information
about what data it will subsequently access early enough for prefetching to hide a sub-
stantial amount of I/O latency. For some applications, both of these steps may be easy.
Such a case is described in Section 7.3.1. For other applications, however, one or both
steps may be difficult. For example, the code which determines what data the application
will access may be spread across many modules, and the code may be ordered in a way
that requires substantial reorganization before the appropriate information can be provided
early enough to derive substantial benefits from prefetching. Such a case is described in
Section 7.3.4. Moreover, while the interface through which the programmer exposes this
information may not produce any side-effects that could introduce new bugs into the appli-
cation, reorganizing code may introduce introduce bugs, so such an effort may also require
additional regression testing and correctness debugging. Therefore, manual modification
has two major drawbacks. First, it can require a formidable amount of programming and
debugging effort. Second, it requires that application source code be available. Given that
application source code is often not available, and programmer time is an expensive com-
modity, it is not realistic to expect that all, or even most, applications that could benefit
from I/O prefetching will be manually modified to provide timely and accurate information
about what data they will access in the future.

The alternative is for this information to be extracted automatically. Prior work on
automating the extraction of information about future data accesses can be divided into
three categories: common access pattern approaches, dynamic history-based approaches,
and approaches based on static analysis. The rest of this section discusses the approaches
in each category. The existing approaches in the first two categories were proposed with
simple prefetch scheduling policies and no modification of the system’s cache ejection
policy. One could imagine, however, changing the prefetches to disclosure hint calls, or
some other mechanism, to leverage the existing work (described in the previous section) on
prefetch scheduling and cache ejection policies. Therefore, the following discussions focus
on the strengths and weaknesses of how the different approaches extract information about
future data accesses.

2.2.4.1 Common access pattern

A common access pattern approach relies on having previously identified some small set of
access patterns that occurs frequently. The basic approach is for the system to observe the
last few accesses, check whether these accesses fits one of the previously identified access
patterns and, if there is a fit, begin issuing prefetches for the data that will soon be accessed
if future accesses continue to fit that pattern.

For example, one of the most widespread forms of automatic I/O prefetching is the
sequential file readahead [10, 35] performed by most file systems. Whenever the file system
detects that the lastn reads to a particular file requested data sequentially (wheren varies
by file system, but is generally one or two) it begins prefetching whatever data is next,
sequentially, in the file (where the amount of data prefetched also varies by file system).

2.2. I/O PREFETCHING 19

Readahead exploits the preponderance of sequential reads that have been documented in
many file trace studies over the years [39, 2, 65]; for example, a recent study [65] found
that almost 86% of read and read/write accesses were within a series of sequential accesses.
However, readahead is less effective than one might expect from these figures because it
can only help performance when the series of sequential accesses spans multiple blocks in
the file cache; otherwise, only the first access could suffer any I/O latency. Therefore, it is
ineffective when accessing small files. Largely due to accesses to small files, for example,
that same recent study included a graph showing that over 90% of sequential read runs were
less than 8 KB in size, which is the cache block size in many systems (including Digital
Unix 3.2, my evaluation system).

The other widespread form of automatic I/O prefetching is the page clustering [31] per-
formed by most operating systems. Page clustering differs widely from system to system.
As an example, consider a virtual memory system that groups pages in an address space
into sets of pages called “clusters”. When a page fault occurs, the virtual memory manager
generates an demand I/O to fetch the page that was faulted on. With page clustering, it also
identifies a cluster to which that page belonged, and generates I/Os to prefetch the other
pages in that cluster. One way that page clustering approaches can differ is in how pages
are grouped into clusters. If the groups are determined statically, i.e. depending on spa-
tial locality, then the page clustering approach is an example of a common access pattern
approach to automating I/O prefetching where the set of pre-identified patterns is spatial
locality in memory accesses. If the groups are determined dynamically, i.e. by observing
memory accesses, then the page clustering approach is an example of a dynamic history-
based approach. Dynamic history-based approaches are discussed in the next section.

Common access pattern approaches have also been proposed for prefetching on behalf
of parallel applications. Previous work [26, 34] has identified access patterns that match the
accesses performed by many these applications, including complicated patterns like strided
accesses.

In general, common access pattern approaches have two major strengths. They can be
very effective when the stream of accesses fits one of the pre-identified patterns and, as-
suming the set of pre-identified patterns is fairly small, they incur little overhead (checking
whether the last few accesses fit one of the patterns). However, these approaches have two
major weaknesses. First, they cannot help whenever the stream of accesses do not fit any
of the pre-identified patterns. Second, they can result in useless prefetching, which can
harm system performance as a side effect of increasing resource contention (as discussed
in Section 2.2.2), whenever the last few accesses fits a pattern, triggering prefetching, but
subsequent accesses do not fit the pattern.

2.2.4.2 Dynamic history

In a dynamic history-based approach to generating I/O prefetches, the system observes
the stream of accesses, and possibly some other information. It uses these to form and
update a set of prefetching rules, and to determine what data to prefetches (based on those
prefetching rules).

20 CHAPTER 2. BACKGROUND

One very simple approach [53, 32, 28], sometimes called the “last-successor” approach,
is to have the file (virtual memory or database) system track, for each file (page or object),
the next file (page or object) accessed the last time that file was accessed. Previous work has
shown that this simple approach can correctly predict the next file (page or object) accessed
the majority of the time; for example, using traces of file accesses, Kroeger and Long [28]
found that this simple approach correctly predicted the next file accessed 72% of the time.

Many more sophisticated approaches have been proposed [60, 40, 6, 16, 32, 28]. Cure-
witz, Krishnan and Vitter [6] were the first to adapt context modelling techniques generally
used for data compression to perform probabilistic prediction of an application’s next page
fault (or, in an object-oriented database, the next object accessed) based on the sequence
of past page faults (or objects accessed). In particular, they used a character-based ver-
sion of the Lempel-Ziv algorithm and the Finite multi-order context models (FMOC) that
originated from prediction-by-partial-match data compressors. Kroeger and Long [27, 28]
proposed approaches based on FMOC for predicting the next file that will be accessed. As
another example, Griffioen and Appleton [16, 17] proposed an approach in which accesses
to files are predicted based on an accumulated graph that tracks, for each file, which files
have most often been amongst the nextn files accessed, wheren is some small number.
This approach differs from the two just described in two related ways: 1) it will implicitly
predict more than just the next file that will be accessed, and 2) it will capture the fact that
an access to file A is often followed by an access to file B even if there is always an access
to some other random file between the accesses to A and B so, for example, it may not be
as sensitive to the interleaving of processes on a multi-tasking machine. However, Kroeger
and Long [28] found that, while conceptually appealing, such an approach may actually
perform worse than the last-successor approach.

Dynamic history-based approaches can be very successful when access streams are
repetitive. Approaches that predict file accesses are also capable of discovering and ex-
ploiting access patterns that span multiple applications. An example drawn from Griffioen
and Appleton’s paper [16] is that such an approach could implicitly recognize an edit-
compile-run cycle for some source tree and prefetch the appropriate compiler, object files,
and/or libraries when it notices that a user is editing a source file in that tree.

On the other hand, dynamic history-based approaches have two critical weaknesses.
First, they cannot help when the sequence of accesses is non-repetitive. For example, it is
unlikely that a dynamic history-based approach could help an application whose accesses
depend on its arguments and inputs if those tend to change each time the application is exe-
cuted. Second, they are limited by the amount of processing cycles and memory resources
they can consume before they incur an overhead that outweighs their benefit. To limit the
amount of processing cycles and memory they consume, such approaches must limit the
types of events they track, the ways in which they analyze these events, and/or the amount
of information they retain about these events. There are many examples of how existing
approaches constrain their effectiveness as a by-product of how they limit their overhead.
For example, the existing approaches for predicting file accesses track open calls rather
than (more numerous) read calls. As a result, they cannot help applications which access

2.2. I/O PREFETCHING 21

large files nonsequentially. A similar example regarding existing approaches for predicting
accesses to pages is that, rather than tracking memory accesses, such approaches track only
page faults. As a result, the information they gather may become useless if the amount of
memory available to an application changes (as would probably occur, for example, if there
is a change in what other applications are executing).

2.2.4.3 Static analysis

In a static analysis-based approach to extracting information about what data will be ac-
cessed in the future, a compiler analyzes the application at compile-time in order to under-
stand the accesses that the application will make when it is executed. The compiler then
transforms the application such that it will provide this information whenever it is executed,
e.g. by inserting prefetch calls into the application.

Early work by Trivedi [63] proposed using static analysis to insert prefetch calls, but the
proposed analysis applied only to looping array codes that could be tiled (loop tiling [70],
also called loop blocking, is a compiler transformation that modifies the way a loop is
structured in order to, for example, increase access locality). More recent work by Mowry,
Demke and Krieger [36] demonstrated static analysis that could insert prefetch calls into a
much broader range of looping array codes. This work also advocates adding a run-time
layer which will allow applications to quickly detect which of their pages are in memory.
The transformed applications use this run-time layer to avoid the overhead of issuing large
numbers of prefetch calls for pages already in memory. This work, and follow-on work by
Demke and Mowry [8], also demonstrated static analysis that could insert, into the same
kinds of applications, release hints indicating pages that will not be re-accessed before they
are ejected from memory. This work demonstrated that, by decreasing memory pressure,
correct release hints improve the performance of not only the issuing application, but also
any concurrent applications.

Theoretically, approaches based on static analysis could deliver the same performance
benefit as having expert programmers modify every application’s source code such that the
applications will issue prefetch calls. In particular, static analysis tools could potentially
perform the same transformation as the expert programmers. In reality, however, these ap-
proaches have fallen short of this ideal. The problem is that the static analysis necessary
for adding I/O prefetching calls can be prohibitively expensive, in terms of computational
cost and/or space. In order to hide the latency of a disk request completely, the compiler
should insert a prefetch call such that it will be issued at least an average disk access time
earlier than the access. Since disk access times are so large relative to processing times,
achieving this requires interprocedural analysis. Many interprocedural static analyses are
NP-complete, however [37]. The algorithms that have been developed, therefore, make
simplifying assumptions. These assumptions limit the quality of the results they obtain for
complex applications. One recent proposal [68] that has leveraged the complexity of static
analysis is an approach for protecting trusted software on untrusted hosts based on trans-
forming the trusted software in ways that will make it more difficult to analyze statically.
The consequence for I/O prefetching has been that existing static analysis approaches ap-

22 CHAPTER 2. BACKGROUND

ply only to more structured codes that are easier to analyze – in particular, looping array
codes (typically, scientific and engineering applications). On such codes, these approaches
have been able to demonstrate impressive results. Most recently, Demke and Mowry [8]
demonstrated that, on a four-processor SGI machine with the swap space striped across ten
disks, their static analysis approach delivered 16% to 61% reductions in execution time for
out-of-core versions of five applications from the NAS Parallel benchmark suite.

2.3 Speculative execution

The approach proposed in this dissertation uses a well-known technique calledspeculative
execution. Speculative execution is simply the practice of executing when the execution
may be incorrect because it is based on one or more possibly incorrect assumptions about
data values. Prior and concurrent work has proposed a variety of different ways in which
speculative execution could be leveraged to improve performance.

Most processors perform speculative execution to reduce pipeline stall due to condi-
tional branches. In particular, when a processor encounters a conditional branch, rather
than stalling until the branch condition is resolved, the processor predicts whether the con-
dition will indicate that the branch should be taken and continues executing based on this
prediction. To ensure that the processor can recover if its prediction turns out to be incor-
rect, it holds any state changes indicated by the speculative execution in temporary storage
until the branch condition is resolved. At that time, if its prediction proves to be incorrect,
it discards the uncommitted state changes and executes the correct branch path normally.
Otherwise, it commits the pending state changes and continues executing normally, having
avoided a pipeline stall.

Researchers have also proposed performing speculative execution to exploit potential
parallelism in applications [52, 56, 19]. This idea is sometimes referred to asthread-level
speculation. Thread-level speculation involves software (language and/or compiler) sup-
port for parallelizing code that may contain data dependencies that would ordinarily pre-
vent such a transformation. It also involves processor support for executing chunks of such
code in parallel speculatively. In particular, while executing a code chunk speculatively,
a processor holds any state changes in temporary storage. It also detects whether it has
encountered any data dependencies that may cause it to produce incorrect results. If so, the
processor discards the uncommitted state changes and re-executes the chunk. Otherwise,
the processor commits the indicated state changes and continues executing, having reduced
the application’s elapsed time by executing some chunks of the application in parallel.

In the two approaches described above, speculative execution is performed to reduce the
amount of normal execution; that is, a speculative execution is considered successful if it
proves to be correct, so that execution can proceed normally simply by continuing execution
after committing any state changes indicated by the speculative execution. In constrast, my
and several other approaches that leverage speculative execution make no attempt to reduce
the amount of normal execution. Instead, speculative execution is performed to produce
some side effect(s) that have the potential to reduce the time required for normal execution.

2.3. SPECULATIVE EXECUTION 23

For example, Dundas and Mudge [9] proposed that processors perform speculative exe-
cution to generate prefetches into the L1 data cache from higher level processor caches and
main memory. In particular, they propose that, upon detecting an L1 data cache miss, rather
than stalling until the cache miss is serviced, the processor checkpoint the register file to
a backup register file, mark the missing data cache word as invalid relative to speculative
execution (via an additional tag bit associated with each register and data cache word), and
begin executing the subsequent instructions speculatively. During speculative execution,
to enable normal execution to be resumed quickly and easily, the processor is permitted to
update only register values and the tag bits that indicate whether a register or data cache
word is invalid relative to speculative execution. Prefetch requests are issued for memory
locations specified by load and store instructions whenever such a location is not formed
using any invalid data and is not currently in the L1 data cache. When the original cache
miss has been serviced, normal execution resumes at the instruction which caused the orig-
inal cache miss after simply restoring the register file from the backup register file. This
approach could improve performance by reducing the number and/or latency of L1 data
cache misses.

More recently, Sundaramoorthy, Purser, and Rotenberg [59] proposedslipstream pro-
cessorsthat perform speculative execution to produce more accurate branch and value pre-
dictions. In their proposal, the operating system instantiates each executed application
twice on a slipstreaming chip multiprocessor (or simultaneous multithreaded processor).
One of these instantiations performs normal execution. The other performs speculative
execution by skipping instructions (and computations leading up to instructions) that the
slipstream processors predict will be unreferenced writes, non-modifying writes, or cor-
rectly predicted conditional branches. The slipstream processors use the conditional branch
directions and the data values calculated during the speculative execution as branch and
value predictions during the non-speculative execution. This approach could improve per-
formance by increasing the accuracy of branch and/or value predictions during normal
execution.

These two proposals differ fundamentally from mine with regard to what side-effect
speculative execution is targetted at producing, and how far ahead speculative execution
needs to be, relative to normal execution, in order to produce this side-effect early enough
to deliver substantial performance benefit. In these proposals, speculative execution is tar-
getted at producing side-effects that will reduce processor pipeline stall. On current proces-
sors, the duration of such a stall is equivalent to at most a few hundred processing cycles.
In contrast, my proposal is targetted at producing I/O prefetches that will reduce I/O stall.
The duration of an average disk stall, which is equivalent to several million processing cy-
cles, is four or more orders of magnitude longer than a processor pipeline stall. One major
ramification of this difference is that, whereas these proposals require maintaining a fairly
small amount of additional state information, my proposed approach can require maintain-
ing a substantial amount of additional state information to enable speculative execution to
generate correct I/O prefetches that are early enough to hide I/O latencies.

Researchers have proposed many other ways in which speculative execution could be

24 CHAPTER 2. BACKGROUND

leveraged to improve performance [23]. Unlike my approach, almost all of these ap-
proaches, as well as the four approaches discussed above, require special hardware support.
The exception, and the prior work closest in spirit to my own, is a proposal by Franaszek,
Robinson and Thomasian [12]. In addition to requiring no special hardware support, their
proposed approach also uses speculative execution to generate I/O prefetches. More specif-
ically, they proposed that databases be implemented such that, whenever a transaction is un-
able to execute normally because some necessary lock is not available, the database would
be able to execute the transaction speculatively in order to discover and prefetch the data
that will be required to perform the transaction. Then, when the locks necessary to per-
form the transaction become available, the prefetched data would allow the transaction to
complete without stalling on I/O. This would minimize the transaction’s lock holding time,
and therefore the time during which the transaction could prevent other transactions from
making progress.

Franaszek, Robinson and Thomasian’s proposal differs from my proposal in three crit-
ical ways. First, their proposal is directed only at databases. My proposal is directed at a
much broader range of applications. One consequence of this difference is that, while they
proposed that a transaction be executed speculatively in its entirety before being executed
normally, my proposal enables more complex interleavings of speculative and normal exe-
cution. Supporting such interleavings raises many issues which did not arise in their work.
Second, their proposal was for speculative execution to be included explicitly in the design
and implementation of a database. A key part of my work is the claim, and the demonstra-
tion, that we can automate the addition of speculative execution for I/O prefetching. This is
critical because programmer time is an expensive commodity, and the programming effort
necessary to incorporate speculative execution into a system could be considerable. Finally,
they evaluated their proposal by performing simulation experiments, and made optimistic
assumptions in their simulations. For example, their simulations assumed that speculative
execution would always cause the correct data to be prefetched. A key contribution of my
dissertation is to demonstrate how successfully speculative execution can generate correct
prefetching calls, and also to explore the limitations of speculative execution. In order to
accomplish this, I designed, implemented and evaluated a complete working system.

2.4 Other techniques for reducing I/O stall time

This section briefly describes other techniques for reducing the I/O stall time experienced
by applications. All of these techniques are complementary to I/O prefetching, and vice
versa.

Section 2.2.1 already discussed how disk scheduling algorithms, like CSCAN, can re-
duce the aggregate I/O positioning time of multiple requests queued at the disk. It also
mentioned how batching multiple requests to the driver can reduce driver overhead.

Section 2.2 already discussed the benefit of improving the cache ejection policy, as well
as several mechanisms for improving cache ejections if given hints about the data that will
(or will not) be accessed in the future. It also mentioned a static analysis approach to adding

2.5. SUMMARY 25

such hints to looping array codes automatically. Another proposal is to use the name and
directory of a file to predict how the file will be accessed and select a cache ejection policy
for the file’s data [25]. One advantage of improving the cache ejection policy relative to I/O
prefetching is that it may also reduce the amount of data that must be fetched from disk.
One disadvantage is that it cannot hide the I/O latency of fetching data that is not cached.

Another way to reduce I/O stall time, which may decrease the amount of data that must
be fetched from disk, is to reorganize the application’s code and/or data to use the cache or
disks more effectively by increasing the temporal and/or spatial locality of accesses. One
possibility is to use a compiler-based transformation, like tiling [70], which can increase
access locality in codes that use regular data structures. Another possibility is to improve
the memory allocator. For example, Seidl and Zorn [49] propose using profile information
to distinguish between objects based on how frequently they will be accessed and how
soon they will be deallocated, then replacing the application’s allocator with one that will
allocate objects with the similar access frequencies and lifetimes on the same pages. A
third possibility is to have a programmer modify an application’s source code such that it
will issue requests in an order that will incur less disk positioning time.

Rather than reorganizing the application’s code or data, another way to reduce I/O stall
time is to change the layout of data on disk such that common access patterns, like sequen-
tial file accesses, will experience less positioning time. One approach is to improve the file
system’s disk block allocation policy. For example, since most files are accessed sequen-
tially, many file systems attempt to store a file’s data sequentially on disk. The Berkeley
Fast File System (FFS) leverages how positioning times, while smallest when consecutive
requests are for data that is sequential on disk, are also smaller than average when consec-
utive requests specify proximate data (e.g. data on the same or adjacent cylinders) rather
than data that is further apart. In particular, FFS attempts to store, in proximate cylinders,
objects that are likely to be accessed around the same time (e.g. a file’s metadata and
data) [35]. More recent work proposes embedding file metadata in directories, and storing
the data of small files from the same directory in adjacent blocks that are accessed as a
unit [13]. A second approach is to rearrange data that is already on-disk. Researchers have
explored reducing seek times by rearranging on-disk data such that frequently accessed
data is near the middle of the disk [66, 55, 44, 1]. This research exploits the observation
that, in general, there is a small subset of the data on a disk which contains the data that
will be specified by most of the requests to that disk.

2.5 Summary

The gap between processing speeds and I/O access times is widening. This trend is caus-
ing applications that must fetch data from disk to spend an increasing proportion of their
execution time stalled on I/O, and to derive diminishing benefits from rapid increases in
processor technology. I/O prefetching, a well-known technique for hiding disk latency, has
the potential to dramatically decrease I/O stall time, particularly when the data that needs
to be fetched is distributed across multiple disks. I/O prefetching can be subdivided into

26 CHAPTER 2. BACKGROUND

two problems: identifying what data will be accessed in the future, and managing global
resources to make the best use of this information. This dissertation work focuses on the
first part of the problem, assuming that a reasonable solution to the second problem will
be available. In particular, the implementation described and evaluated in this dissertation
issues disclosure hints to the TIP prefetching and caching manager.

It is unrealistic to expect that programmers will end up modifying most applications
to generate prefetch calls because such modification requires application source code, and
can require substantial programming and debugging effort. Therefore, it would be better
to have techniques for automating the generation of prefetching calls. Unfortunately, prior
automatic techniques are insufficient for generic I/O-intensive applications with non-trivial
access patterns. Motivated by these shortcomings, this dissertation work investigates a new
automatic approach to generating prefetching calls. This approach is based on speculative
execution, a technique that has long been used to avoid pipeline stalls in processors. This
dissertation work is the first to explore automating speculative execution in software. It is
also the first complete design and evaluation of a system for using speculative execution to
hide I/O latency.

Chapter 3

The speculative execution approach and
introduction to the design discussion

This chapter introduces the speculative execution approach to automating I/O prefetching
and sets the framework for the design discussion in the following three chapters. Sec-
tion 3.1 begins by describing the speculative execution approach. It then discusses the
potential advantages and disadvantages of this approach relative to prior approaches. This
discussion suggests that, while there were reasons to conjecture that this approach might
be able to deliver substantial performance benefits for a wider range of applications than
prior approaches, there were also reasons to believe that the approach would turn out to be
impractical.

To resolve this question, I designed, implemented and evaluated a system that applies
the speculative execution approach. The second half of this chapter, and the next three
chapters, discuss the issues that arise in developing a design for applying the speculative
execution approach. Section 3.2 begins by describing the three basic goals for any such
design. There are many different designs that could potentially satisfy these goals. The
section proceeds to describe a few design possibilities, and argue that no single design
will be best in all circumstances. Section 3.2.3 then introduces my dissertation design and
implementation, and the assumptions on which it is based. The chapter concludes with a
brief summary.

3.1 The speculative execution approach

The speculative execution approach to automating I/O prefetching is a novel approach to
initiating I/O prefetching on behalf of target processes in order to reduce the execution
times of those target processes. This section begins by describing the approach and using
examples to show why it may succeed. Section 3.1.1 then discusses potential advantages
of this approach relative to prior approaches. Next, Section 3.1.2 discusses the limitations
of this approach, and its disadvantages relative to prior approaches. Finally, Section 3.1.3
discusses why these limitations may not be a problem in many interesting situations.

27

28 CHAPTER 3. THE SPECULATIVE EXECUTION APPROACH

The speculative execution approach has four components. The first, key component
is to add an execution of the code of each target process which strives to predict what
data its target process will access, and initiate prefetching according to those predictions.
Specifically, the approach involves adding aspeculative executionof each target process’s
code that runs ahead of itstarget normal execution(its target process’s non-speculative ex-
ecution) by skipping some operations, like blocking accesses to uncached data. Skipping
operations will probably cause the speculative execution to use some incorrect data values,
where a data value is incorrect if it differs from the data value that will be used during
its target normal execution. For example, if the speculative execution skips a request for
file data, then the correct values in that file data will not be available during its subsequent
computations. Despite any such differences, the approach predicts that the data accesses
encountered during a speculative execution will often be the same as the data accesses that
will occur during its target normal execution. Therefore, whenever a speculative execution
encounters a data access for uncached data, the approach predicts that the speculative ex-
ecution may be able to reduce the I/O stall time of its target normal execution by fetching
that data into memory. The speculative execution may fetch that data by blocking on the
access or, better yet, by issuing a non-blocking prefetch for that data.

To illustrate how this method of predicting what data a process will access can result
in accurate prefetches, assume that a speculative execution simply converts every blocking
read call it encounters into a non-blocking prefetch call for the same data. Now, con-
sider the simple program shown in Figure 3.1. When executed, this program will read
INTSPERFILE integers from each of the files specified in its arguments, and accumulate
the sum of all the integers read. The program will terminate after outputting that sum.

void main(int argc, char **argv) {
 int i, j, fd, intbuf[INTSPERFILE], sum;

 for (i=0, sum=0; i < argc-1; i++) {
 fd = open(argv[i+1],"r");
 read(fd, (char *)intbuf, INTSPERFILE*sizeof(int));
 for (j=0; j < INTSPERFILE; j++)
 sum += intbuf[j];
 }
 printf("%d\n", sum);
}

Figure 3.1: A simple program used to illustrate how a speculative execution could accurately predict
what data a process will access in the future.

Assume that the program is executed with arguments specifying files that are not in
memory. When the program’s normal execution issues its first read call, the requested data
will not be in memory, so it will block on that read call, waiting for the data to be fetched
from disk (or a file server). However, the added speculative execution will not be blocked,
so it will be able to use this opportunity to run ahead of the program’s normal execution.
Speculative execution will iterate through the outerfor loop in main , issuing a prefetch
call at the beginning of each iteration. Even though it will probably calculate an incorrect

3.1. THE SPECULATIVE EXECUTION APPROACH 29

value forsum, notice that the prefetch calls it issues will accurately specify the data that
will be read during normal execution.

The second component of the speculative execution approach is to restrict these added
speculative executions to consuming only spare processing cycles. The purpose of this re-
striction is to prevent the approach from hurting performance by stealing processing cycles
from normal executions. Notice that, on a uni-processor, this restriction means that specu-
lative execution should take place only when all normal executions are blocked, including
all target normal executions.

The third component of the approach is to ensure that, whenever a speculative execution
is actually executing, it will be running ahead of its target normal execution. The purpose of
this clause is to prevent speculative executions from hurting performance by stealing mem-
ory and I/O resources from normal executions when there is no chance that the speculative
executions could provide benefit. In particular, because speculative execution is restricted
to consuming spare processing cycles, a speculative execution could easily fall behind its
target normal execution. However, a speculative execution can generate predictions only
while it is running ahead of its target normal execution, and the sole purpose of performing
speculative execution is to generate such predictions. Therefore, if a speculative execution
is running behind or (on a multi-processor) in synchrony with its target normal execution,
any resources it uses are being wasted.

To illustrate why restricting speculative execution to spare processing cycles may not
prevent speculative execution from initiating prefetches that can improve performance sub-
stantially, reconsider the above example while focusing on performance rather than prefetch
accuracy. Assume that the program is executed on a uni-processor with arguments specify-
ing four files that are stored on different disks, and that no other programs are executing at
the same time as this program. As before, assume that the specified files are not in memory
and that speculative execution simply converts every read call it encounters into a prefetch
for the same data. In addition, assume that, whenever speculative execution is scheduled,
it will be resynchronizedwith its target normal execution – that is, the speculative execu-
tion’s execution state(e.g. its program counter, register values, and variable values) will
be updated to look like its target normal execution’s execution state – so that, as soon as
it begins running, it will jump ahead of its target normal execution. Finally, for simplicity,
assume that a disk will service a disk request in three million processing cycles, and that
open files specified in arguments and the innerfor loop in main each take
one million processing cycles to execute. In reality, the average disk access time on a typ-
ical current system is equivalent to several million processing cycles, but any given access
may take much less, or more, time. Also, the innerfor loop would probably take much
less than one million processing cycles, unlessINTSPERFILE is extremely large.

Figure 3.2A illustrates how execution would proceed ordinarily (i.e. without speculative
execution). The program would execute until it issues its first read call. Since the data
specified by this read would not be in memory, execution would block while the data is
fetched from disk. Execution will resume only when the disk request completes. It would
then proceed only until the second read call since that read call would also specify data

30 CHAPTER 3. THE SPECULATIVE EXECUTION APPROACH

D

D = demand request P = prefetch request

Disk 1
Disk 2
Disk 3
Disk 4

D D D D

D D D

Normal

Disk 1
Disk 2
Disk 3
Disk 4

Normal

(A)

(B)

0 1 2 3 5 6 7 10 11 12 13 14 15 164 8 9
Time (million cycles)

17

Speculative
P P P

Figure 3.2: Example illustrating how speculative execution could deliver substantial performance
benefits. (A) shows how execution would ordinarily proceed for the program shown in Figure 3.1,
given the assumptions specified in the text. Basically, execution would alternate between process-
ing and stalling on I/O. (B) shows how execution might proceed for the program if a speculative
execution was added. While the normal execution is stalled on I/O, the speculative execution would
run ahead of normal execution. Before the initial I/O completes, it would be able to issue prefetch
calls for all the data that will subsequently be accessed during normal execution. Therefore, once
normal execution resumes, it will experience no more I/O stalls, allowing the program’s execution
time to be more than halved.

not in memory, causing execution to block again while the appropriate data is fetched from
disk. This alternation between processing and stalling on I/O would repeat two more times
before the program’s execution completes, having taken a total of 17 million processing
cycles.

Figure 3.2B depicts how execution would proceed if speculative execution was added.
As before, the program would execute until it issues its first read call and then normal exe-
cution would block while the data specified by this call is fetched from disk. While normal
execution is blocked, the processor would be available for speculative execution. Specula-
tive execution would be resynchronized with normal execution and then scheduled, so that
it would pick up from where normal execution is blocked. Before the initial disk request
completes, there might be just enough time for speculative execution to iterate through
the outerfor loop three times, issuing three prefetch calls. Once the initial disk request
completes, normal execution would resume, preempting speculative execution. Now, how-
ever, by the time normal execution issues each of its subsequent read calls, the specified

3.1. THE SPECULATIVE EXECUTION APPROACH 31

data would have already been prefetched into memory. Therefore, normal execution would
experience no more I/O stalls, allowing the program to complete in 8 million processing
cycles, i.e. less than half the time that it would take without speculative execution.

The fourth and final component of this approach is to require that speculative execu-
tions can be added automatically and safely. In particular, adding speculative execution
should not require that a programmer manually modify the source (or binary) code of tar-
get applications. Moreover, adding speculative execution should not affect the behavior of
a system in a manner that users would consider to be erroneous. For example, returning to
the example based on Figure 3.1, the value ofsum should not be output during speculative
execution since users would consider this to be extraneous, incorrect output. This clause is
necessary because, without an automatic and safe way to add speculative executions, it is
highly unlikely that the approach would ever be adopted.

3.1.1 Potential advantages

This section discusses the potential advantages of the speculative execution approach rel-
ative to prior approaches to automating I/O prefetching. As described in Section 2.2.4,
the prior approaches each have one or more major weaknesses that cause them to be in-
effective for a large set of applications. By not sharing these weaknesses, the speculative
execution approach has the potential to greatly expand the set of applications for which
I/O prefetching can be automated. In addition, even if a prior approach can automate I/O
prefetching for an application, the speculative execution approach may be able to deliver
larger performance benefits for that application.

One major weakness of any approach based on pattern matching, whether a common
access pattern approach or a dynamic history-based approach, is that its success relies on
repetition. In particular, the success of a common access pattern approach relies on access
sequences matching one of its fixed set of common access patterns. Therefore, these ap-
proaches are ineffective for applications with non-trivial access patterns. Dynamic history-
based approaches are more flexible because they can modify their set of patterns based on
observing the accesses that occur on the system, but they are still unable to prefetch for
access sequences that have not previously been observed. Therefore, for example, they
tend to be ineffective for applications whose accesses are input-dependent, assuming those
inputs often vary between runs. Because the speculative execution approach predicts future
data needs by pre-executing application code rather than by pattern matching, it has the
potential to generate prefetches for arbitrary access sequences, including access sequences
which have never previously occurred.

Dynamic history-based approaches also have two other major weaknesses. First, to re-
duce the amount of information they maintain, existing approaches for prefetching file data
track only file open calls rather than individual file read calls. Therefore, they are ineffective
for applications which access large files non-sequentially. Second, in order to avoid hurting
performance by generating many useless prefetches, most existing approaches are designed
to prefetch for only the next data access, and the remainder prefetch for only a small num-

32 CHAPTER 3. THE SPECULATIVE EXECUTION APPROACH

ber of subsequent data accesses. Therefore, the benefit of these approaches is limited by
the time between data accesses, which may be orders of magnitude less than disk access
times (e.g. if some of the accessed data is already in memory). The speculative execution
approach has the potential to generate prefetches for non-sequential accesses within large
files. Moreover, it has the potential to generate prefetches many accesses in advance, which
may allow it to deliver larger performance benefits than dynamic history-based approaches.

The main weakness of approaches based on static analysis is that the cost, complexity
and precision of the required static analyses increases with the complexity of the code to
be analyzed. As a result, all existing approaches are applicable only to simply-structured
looping array codes. A secondary weakness is that it can be difficult for these approaches
to transform an application in a manner that will generate prefetches efficiently regardless
of the values taken on by variables whose values are determined only during the applica-
tion’s execution. The speculative execution approach does not require any sophisticated
static analyses. In addition, each time a speculative execution is resynchronized with its
target normal execution, it will automatically incorporate any values that were previously
determined during that normal execution. Therefore, the approach automatically takes ad-
vantage of values that are determined during an application’s execution.

3.1.2 Limitations and disadvantages

As discussed in the last section, the two potential advantages of the speculative execution
approach are that it may expand the set of applications for which prefetching can be auto-
mated, and it may sometimes deliver larger performance benefits than prior approaches to
automating I/O prefetching. This section discusses the three main reasons why the spec-
ulative execution approach may fail to provide these advantages. It then discusses the
disadvantages of this approach relative to prior approaches.

First, the approach may fail whenever the uncached data that will be accessed during a
target normal execution depends on data values that are incorrect during speculative execu-
tion. When such data dependencies exist, speculative execution may not accurately predict
what data will be accessed during its target normal execution. For example, consider the
program shown in Figure 3.3. If this program is executed whenSetupFile andAlter-
nateSetupFile are not in memory, then normal execution will block while reading
SetupFile . Speculative execution will pick up from where normal execution is blocked
not knowing the correct value ofmysff.usealternate . Depending on what value it
ends up using, it may or may not issue a prefetch forAlternateSetupFile . If it uses
the wrong value, it may fail to issue a prefetch that would have improved the performance
of its target execution or, even worse, it may issue a useless prefetch which, by consuming
I/O and memory resources, could hurt the performance of normal executions.

Second, the approach will fail if there are insufficient memory resources. Immediately
after a speculative execution is resynchronized with its target normal execution, their exe-
cution states will be identical. As the speculative execution runs ahead of its target normal
execution, however, it will probably compute new values for various variables. To reduce

3.1. THE SPECULATIVE EXECUTION APPROACH 33

struct setupfileformat {
 int usealternate;
 ...
};

void main() {
 int fd;
 struct setupfileformat mysff;

 fd = open("SetupFile","r");
 read(fd, mysff, sizeof(struct setupfileformat);
 if (mysff.usealternate) {
 close(fd);
 fd = open("AlternateSetupFile","r");
 read(fd, mysff, sizeof(struct setupfileformat);
 }
 ...
}

Figure 3.3: A simple program used to illustrate how data dependencies can make it difficult for
speculative execution to generate accurate prefetches.

the number of incorrect data values it will subsequently use, it may update its execution
state to reflect such changes in variable values. This would require additional memory (be-
cause a speculative execution should not change the execution state of its target normal
execution since such changes might cause the target normal executions to generate incor-
rect output). Unfortunately, if memory resources are not sufficiently abundant, any memory
pressure added by speculative execution could cause useful data to be prematurely evicted
from memory, which could severely degrade performance.1

Third, the approach will fail if there are insufficient spare processing cycles. In particu-
lar, the approach will not be able to improve the performance of a target normal execution
substantially if a speculative execution cannot get far enough ahead to discover and initiate
prefetching for uncached data substantially in advance of when that data is requested by
the target normal execution. There are three reasons why there may be insufficient spare
cycles. First, if the target application is multi-threaded or there are concurrently executing
applications, then there may be few, or no, spare processing cycles. Next, if the target nor-
mal execution consumes a large amount of processing cycles between accesses to uncached
data, then, even if there are no other normal executions, there may be insufficient opportu-
nity for a speculative execution to get far enough ahead of that target normal execution. For
example, in the example illustrated by Figure 3.2 (of executing the program in Figure 3.1),
assume that executing the innerfor loop required more than three million processing cy-
cles (i.e. more time than servicing a disk request). Then, while normal execution is stalled

1To avoid this issue, a particular design for adding speculative executions could constrain the additional
memory consumed by speculative execution to some negligible amount. For example, a design could con-
strain speculative executions such that they could update only register values, or only register and stack values.
However, as demonstrated by the results shown in Section 8.2.1, such a design would deliver performance
benefits to only a subset of the applications that a less constraining design could benefit.

34 CHAPTER 3. THE SPECULATIVE EXECUTION APPROACH

struct fileformat {
 struct _datastats {
 float mean;
 ...
 } datastats;
 float sorteddata[FLOATSPERFILE];
};

void main(int argc, char **argv) {
 int i, j, fd, nbelowmean;
 struct fileformat myff;

 for (i=0; i < argc-1; i++) {
 fd = open(argv[i+1],"r");
 read(fd, myff, sizeof(struct fileformat);
 for (j=0, nbelowmean=0; myff.sorteddata[j] < myff.datastats.mean; j++)
 nbelowmean++;
 printf("%s: %d\n", argv[i+1], nbelowmean);
 }
}

Figure 3.4: A simple program used to illustrate how data dependencies can lead a speculative execu-
tion to perform a large amount of work that will not be performed during its target normal execution,
possibly preventing it from generating useful prefetches.

on the first read call, there would be insufficient cycles for naive speculative execution to
complete an iteration of the outerfor loop, so speculative execution would not be able
to initiate any prefetching. Finally, a speculative execution may consume processing cy-
cles performing work that will not be performed during its target normal execution. After
having consumed these cycles, there may be insufficient remaining spare cycles. For an
example of how this could happen, consider the program shown in Figure 3.4. When ex-
ecuted, this program reads each of the files specified in its arguments. Each file contains
an array of sorted integers and some statistics about these integers, including their mean.
The program outputs the number of below-mean integers in each file. If this program is
executed with arguments specifying files not in memory, then normal execution will block
on its first read call. Speculative execution will pick up from where normal execution is
blocked not knowing the correct values for the integer data or the mean. Depending on
what values it uses, it may iterate through the innerfor loop either fewer or more times
than will its target normal execution. It is possible that it could iterate so many more times
that it is unable to start a new iteration of the outerfor loop and generate a prefetch for
the next file before its target normal execution resumes.

These limitations may not be shared by prior approaches to automating I/O prefetching.
First, it is possible that a prior approach would be less affected by data dependencies than
speculative execution. For example, reconsider the example discussed above that uses the
program in Figure 3.3. IfSetupFile is never modified and indicates thatAlternate-
SetupFile should be used, then a history-based approach may be able to consistently
prefetchAlternateSetupFile as soon asSetupFile is accessed. Second, nei-
ther common access pattern approaches nor static analysis approaches require a substantial

3.1. THE SPECULATIVE EXECUTION APPROACH 35

amount of memory, and none of the prior approaches requires spare processing cycles.
Therefore, the success of the speculative execution approach is uniquely vulnerable to both
the processor and memory utilization of concurrently executing processes. Thus, if one
of these other approaches can generate prefetches for an application at least as accurately,
abundantly and early as the speculative execution approach, then it is likely that approach
will sometimes be able to improve the performance of that application by a larger amount
than the speculative execution approach.

The dependence of the speculative execution approach on spare processing cycles ac-
tually creates an interesting effect in which speculative executions can be victims of their
own success. Basically, the more successful speculative executions are at initiating accu-
rate and timely prefetching, the less frequently their target normal executions will need to
block, and therefore the fewer spare processing cycles there will be in which speculative
executions can initiate further prefetching. This effect is especially noticeable on a uni-
processor system since, on such systems, speculative executions can consume processing
cycles only while all normal executions are blocked. For example, if the only accesses
a process makes to uncached data are to sequentially read a single large file then, on a
uni-processor, it is likely that sequential readahead will be slightly more effective than the
speculative execution approach (though the difference may not be noticeable).

In contrast to the situations just described, in which a prior approach may be more
effective, recall that there are also factors which would limit the performance benefit that
any prefetching approach could deliver. These factors include the percentage of time a
process would spend stalled on I/O, the disk locations of the uncached data that a process
would access, and the amount of available I/O bandwidth (as discussed in Section 2.2).
In addition, data dependencies can make it very unlikely that any automatic prefetching
approach would be able to generate accurate prefetches. For example, consider the program
shown in Figure 3.5. When this program is executed, it will first read a header from the
beginning of the file specified as an argument to the program, and then read some data from
that file. Since the location and size of the data specified by the second read call depends
on the data specified in the first read call, if the program is executed with an argument
specifying a file that is not in memory, it is unlikely that any automatic prefetching approach
will be able to generate an accurate prefetch for the second read call.

3.1.3 Discussion

The previous section describes the factors which can cause the speculative execution ap-
proach to fail. This section discusses why those factors may not occur so frequently as to
make this approach uninteresting.

First, data values that are incorrect during speculative execution can cause the approach
to fail for some processes. However, it may be the case that such values will not prevent the
approach from succeeding for many processes. One likely scenario in which this should
often be true is if the incorrect values are used by some target process only to generate
output (as, for example, in the program shown in Figure 3.1). Another likely scenario is

36 CHAPTER 3. THE SPECULATIVE EXECUTION APPROACH

struct fileheader {
 int offsetofAdata;
 int sizeofAdata;
 ...
 int offsetofKdata;
 int sizeofKdata;
 ...
};

void main(int argc, char **argv) {
 int fd;
 struct fileheader myfh;
 char *buf;

 fd = open(argv[1],"r");
 read(fd, myfh, sizeof(struct fileheader);
 lseek(fd, myfd.offsetofKdata, SEEK_SET);
 buf = malloc(myfd.sizeofKdata);
 read(fd, buf, myfd.sizeofKdata);
 process_Kdata(buf);
}

Figure 3.5: A simple program used to illustrate how data dependencies can make it unlikely that
any automatic prefetching approach could generate accurate prefetches.

that the data fetched by a target process during one I/O will determine the next several
chunks of uncached data that will be accessed by the target process. For such a target
process, speculative execution would not be able to initiate prefetching for all the uncached
data, but may be able to initiate prefetching for a substantial subset of that data.

Second, the speculative execution approach will be unsuccessful on any system that
is balanced to fully utilize its processing and/or memory resources (e.g. some database
installations). However, since the primary performance metric for these systems is often
throughput rather than latency, and I/O prefetching cannot improve throughput on a loaded
system, employing any sophisticated I/O prefetching approach on these systems would
probably be inappropriate.

Third, on most systems, it may be the case that there will often be ample spare pro-
cessing and memory resources. For example, it has been observed that processing cycles
on current systems are often wasted because all applications are blocked waiting for user
input, a server response, the network, or disks [46]. Moreover, the rapid advance of pro-
cessor technology, the increasing popularity of multi-processor systems, and the growth in
memory sizes may increase the abundance of spare processing cycles and under-utilized
memory.

Finally, it may be the case that the amount of code a target process will execute between
accesses to uncached data will usually be reasonably small, so speculative execution will
not require a huge number of spare processing cycles to generate predictions and initiate
prefetching on behalf of that target process. For example, the second column of Table 3.1
shows the median and average time between read calls for a set of real-world applications
on a 233 MHz system. The average disk access time for this system is 15 ms, which is
at least an order of magnitude larger than the median time between read calls for all the

3.2. DEVELOPING A DESIGN 37

Benchmark Time between reads Potential prefetches per stall
Median Average Median Average

Agrep 126 us 140 us 118 107
XDataSlice 952 us 925 us 15 16
Gnuld 45 us 131 us 335 114
Postgres 80% 910 us 927 us 16 16
Postgres 20% 1.1 ms 2.0 ms 13 7
Sphinx 83 us 230 ms 181 65

Table 3.1: For a set of benchmarks, this table shows: (in the second column) the median and average
time that the benchmark spent processing between read calls, and (in the third column) the number
of requests that could potentially be identified during a single I/O stall based on the figures in the
second column. The median and average for each benchmark were calculated from the middle
90% of the inter-read times for that benchmark. The number of requests that could potentially be
identified during an I/O stall is calculated asb15ms=time between readsc, where 15 ms is the
average I/O access time for this system andtime between reads is taken from the second column.
The benchmarks and evaluation system are described in Chapter 7.

examined applications. This suggests that a speculative execution of any of these applica-
tions may often be able to initiate a prefetch for the next read call that will be issued by its
target normal execution using only a small percentage of the cycles during which that target
normal execution is stalled on I/O. Moreover, it suggests that, as shown in the last column,
if there are no other processes competing for the processor while a target normal execution
is stalled on I/O, a speculative execution of these applications may often be able to initiate
prefetching for a large number of its target normal execution’s subsequent requests.

3.2 Developing a design

This section begins the discussion of how to develop a design for adding speculative ex-
ecution, setting the framework for the design discussion in the next three chapters. Sec-
tion 3.2.1 describes the three basic goals for any such design. Each of the next three chap-
ters focus on the design issues relevant to one of these goals. Section 3.2.2 then describes
a few possible designs at a very high level, and some potential advantages and disadvan-
tages of each. Section 3.2.3 then introduces the design I developed and implemented in
the course of this dissertation work in order to evaluate the potential of the speculative
execution approach.

38 CHAPTER 3. THE SPECULATIVE EXECUTION APPROACH

3.2.1 Design goals

Regardless of the particular design, there are three basic design goals:

� Effectiveness– applying the design should result in substantial improvements in per-
formance whenever it is possible for the approach to deliver such improvements.

� Low overhead– applying the design should never hurt the performance of a normal
execution by a noticeable amount; and

� Safety– applying the design should never change the output of normal executions in
ways users would consider to be incorrect.

The biggest challenge in developing a design for adding speculative executions is trying
to achieve all of these goals simultaneously. While the next three chapters each focus on
the design issues particularly relevant to one goal, they contain many discussions of design
decisions that are tradeoffs between two or all three of these goals.

3.2.2 Design alternatives

This section attempts to give a feel for the range of possible designs by sketching a few
possibilities without much detail. It then argues that no single design is “best” by discussing
why one or another design might be most appropriate in a given situation.

Consider the following possible designs:

An in-kernel design: This design would be implemented entirely within an operating sys-
tem. When a target process begins executing, the operating system would fork a child
process that performs speculative execution on behalf of that target process. The op-
erating system would mark that child process as a “speculating” process. Whenever
the operating system processes a read system call for data that is not in memory, it
would check whether the issuing process is a speculating process and, if so, rather
than blocking the issuing process until the data is fetched into memory, would initiate
prefetching for the specified data and immediately return from the call.

A user-level design based on interpretation: This design would not require any kernel
modifications and would be implemented within an interpreter. The interpreter would
perform speculative execution by interpreting the code of target processes. Whenever
the interpreter encounters a read call, it would issue a non-blocking prefetch call
for the same data (using the most appropriate mechanism provided by the operating
system).

A user-level design based on binary modification: This design would not require any
kernel modifications and would be implemented within a binary modification tool.
The tool would accept application binaries and modify the binaries such that, when
executed, they would fork a child process that would perform speculative execution
on behalf of its parent process. The binaries would be modified such that the child
process would issue non-blocking prefetch calls in place of read calls (using the most
appropriate mechanism provided by the operating system).

3.2. DEVELOPING A DESIGN 39

A user-level design based on source code modification: This design would not require
any kernel modifications and would be implemented within a compilation system.
The compilation system would accept application source code and modify that source
code much as described above for a design based on binary modification.

There are many other possibilities – for example, a design that combines some degree
of kernel modifications with an interpreter, binary modification tool, or compilation system
– but the four above are more than sufficient to demonstrate that no single design will be
the best in all situations. For example, a design that requires kernel modifications will not
be appropriate for an application-developer or end-user who cannot make modifications in
the operating system. On the other hand, all purely user-level designs will be limited by the
mechanisms currently supported by the operating system. With these mechanisms, it may
be difficult or impossible to achieve the design goals described in Section 3.2.1.

Notice that, even if we restricted ourselves to user-level designs, no single design will
be best in all circumstances. Since source code typically contains more information than
binaries (source code contains typing, structural and control flow information that is typi-
cally not included in binaries), a design based on source code modification may have the
potential to leverage the additional information to make speculative execution more effec-
tive than interpretation or binary modification designs. However, such a design would not
be appropriate when application source code is not available.

3.2.3 The SpecHint design and implementation

For this dissertation, I developed, implemented and evaluated one design in order to demon-
strate that an implementation of the speculative execution approach has the potential to
substantially improve the performance of a wide range of applications. I chose to develop
a user-level design based on binary modification that assumes operating system support for
I/O prefetching, but no operating system support specific to speculative execution.

I chose to investigate this particular design point for several reasons. First, I wanted to
concentrate on the part of the I/O prefetching problem which was most poorly addressed by
prior work – that is, predicting what data will be accessed in the future rather than deciding
when to schedule what prefetches. Therefore, I decided to leverage an existing solution to
the problem of deciding when to schedule what prefetches – the TIP informed prefetching
and caching system (see Section 2.2.3.1). Second, I wanted to develop a design which
would be appropriate in the widest range of circumstances, even if not optimal in all of
those circumstances. Therefore, I ruled out designs that required operating system support
specific to speculative execution and designs based on source code modification. Finally, a
design based on interpretation and a design based on binary modification seem appropriate
for an equally wide range of situations but, considering the unavoidable overhead of inter-
pretation, it seemed likely that a design based on binary modification could deliver better
results.

The design I developed, which I call theSpecHint design, is targeted at single-threaded
applications and generates prefetches for file data accessed through explicit file read calls.

40 CHAPTER 3. THE SPECULATIVE EXECUTION APPROACH

The most defining design decision in the SpecHint design is that speculative executions
take place in the same address space as their target normal executions. In particular, the
SpecHint design calls for adding a thread – referred to as aspeculating thread– to each
target process, and using these added speculating threads to perform speculative execution.
As discussed in Section 5.2.1, this decision was largely driven by performance characteris-
tics of the operating system targetted by my implementation (Digital Unix 3.2). I mention
it here because it had an enormous impact on the rest of the design.

As mentioned above, the SpecHint design assumes operating system support for I/O
prefetching. While the implementation assumes the TIP informed prefetching and caching
manager, the design is not tied to the TIP manager. In particular, the design could take
advantage of any system that provides the following features: 1) prefetching system calls
that produce no side-effects (e.g. that do not modify file pointers) so that issuing these calls
will always be safe, and that expect data to be specified using a file offset, the number of
bytes, and either a file descriptor or a file name, 2) prefetch cancellation calls that allow
the retraction of prior prefetch calls, and 3) support for scheduling prefetches that properly
accounts for competing demands on memory and I/O bandwidth, so that correct prefetch
calls can and should be issued as soon as possible. Notice that the operating system support
assumed by the SpecHint design is not specific to speculative execution; any manual or
automatic approach to I/O prefetching would be able to take advantage of this support.

My implementation of the SpecHint design, which I refer to as theSpecHint imple-
mentation, contains three optional elements, not specified by the design. I included these
optional elements to investigate various potential optimizations. Chapter 8 evaluates both
base SpecHint(the implementation of the SpecHint design, without any of these optional
elements), as well as the effect of including each of these optional elements.

The discussion of the SpecHint design and implementation is split into three sections
(Sections 5.2, 6.3, and 4.2), each of which discusses the design decisions most relevant to
one of the three basic design goals (discussed in Section 3.2.1).

3.3 Summary

The speculative execution approach to automating I/O prefetching is a novel approach to
initiating I/O prefetching on behalf of target processes in order to reduce their execution
times. The key to this approach is the unique mechanism it uses to predict what data a
target process will access. In particular, the approach is to add an execution of each target
process’s code that exploits spare processing cycles. This added execution runs ahead of
the target process’s normal execution by skipping some operations, like blocking accesses
to uncached data. This permits differences between the data values used during the added
speculative execution and the data values that will be used during its target normal execu-
tion. Despite any such differences, the approach predicts that the data accesses encountered
during a speculative execution will often be the same as the data accesses that will occur
during its target normal execution. Thus, the approach predicts that, by initiating prefetch-
ing for that data, the speculative execution would be able to reduce the I/O stall time of its

3.3. SUMMARY 41

target normal execution.
The success of the speculative execution approach is based on the following assump-

tions:

� Given ample processing and memory resources, the uncached data that will be ac-
cessed by target processes can often be predicted by a speculative execution of their
code.

� There will often be adequate spare processing and memory resources for speculative
executions to generate such predictions early enough that data can be prefetched
substantially in advance of when it will be accessed.

� It is possible to develop a design for adding speculative executions automatically
which is safe and provides an acceptable tradeoff between overhead and performance
improvement.

When developing a design for adding speculative execution, there are three basic de-
sign goals: safety, low overhead, and effectiveness. There are many possible designs for
adding speculative execution that could achieve these goals to varying extents, but no sin-
gle design will be optimal in all situations. In order to investigate the potential of the
speculative execution approach, I developed and implemented a user-level design based
on binary modification that assumes operating system support for I/O prefetching, but no
operating system support specific to speculative execution. A key element of this design is
the addition of a speculating thread to each target process, where speculating threads are
responsible for performing speculative execution on behalf of their process’s normal exe-
cution. The complete description of the SpecHint design is split into three sections, one in
each of the following chapters, where each section focuses on the design decisions most
influenced by one of the three basic design goals.

42 CHAPTER 3. THE SPECULATIVE EXECUTION APPROACH

Chapter 4

Design goal: Effectiveness

Since the speculative execution approach limits speculative execution to spare processing
cycles, and I/O prefetching can improve performance mainly when there is spare I/O band-
width, designs for adding speculative execution depend on the availability of spare process-
ing and I/O resources. Theeffectivenessof a design for adding speculative execution is how
successfully it exploits whatever resources are available on a system to decrease the elapsed
time of target normal executions. This is mainly determined by how quickly and accurately
the design enables speculative executions to generate prefetches for the uncached data that
will be accessed during their target normal executions. This chapter focusses on how a
design might increase the speed with which speculative executions will be able to gener-
ate accurate prefetches. Section 4.1 discusses several possible methods. Then, Section 4.2
describes the mechanisms in the SpecHint design and implementation.

4.1 Designing for effectiveness

As discussed in Section 3.1.2, incorrect data values and insufficient processing cycles are
two of the main factors that could prevent speculative executions from reducing the I/O
latency of their target normal executions. Thus, the effectiveness of a design is mainly
determined by: 1) what potentially incorrect data values it will cause to be introduced into
the execution states of speculative executions, and 2) the speed with which it will enable
speculative executions to run ahead of their target normal executions. The first determines
whether speculative executions, given an infinite amount of resources, would be capable
of generating prefetches that are accurate. The second determines how many processing
cycles speculative executions would require to generate prefetches, as well as how early
those prefetches would be generated (and, therefore, how much I/O latency they would
hide).

A design determines what potentially incorrect data values will be introduced into the
execution states of speculative executions in two ways. First, the design determines which
operations will differ between speculative executions and their target normal executions.
These will include whatever blocking operations (e.g. blocking file read calls) that the

43

44 CHAPTER 4. DESIGN GOAL: EFFECTIVENESS

design causes speculative executions to replace with non-blocking operations (e.g. non-
blocking prefetch calls). It will also include any other operations that the design causes
speculative executions to skip (e.g. in order to avoid changing the output of normal execu-
tions, as discussed in the previous chapter). Second, given that these differences will cause
some data values to be unavailable during speculative execution (e.g. the data values that
would have been obtained by a blocking file read call that was replaced with a prefetch
call) the design determines what data values speculative execution will use instead during
its computations.

A design determines the speed with which speculative executions will run ahead of
their target normal executions in two ways. First, the design determines how quickly, and
how frequently, a speculative execution willresynchronizewith its target normal execution
(i.e. how quickly and how frequently a speculative execution will update its execution
state to match that of its target normal execution, in order to enable it to run ahead of its
target normal execution). Second, the design determines the relative speed of a speculative
execution and its target normal execution, where a design affects this relative speed by, for
example, adding work to speculative execution (e.g. to ensure the safety of the design, as
discussed in the previous chapter).

Section 4.1.1 discusses issues related to resynchronizing speculative executions with
their target normal executions. Section 4.1.2 discusses a way in which a design might be
able to increase the speed of speculative execution. Finally, Section 4.1.3 discusses a way
in which a design might increase the performance benefit it delivers by choosing what data
values speculative execution uses in place of unavailable data values.

4.1.1 Resynchronizing speculative and normal execution

Recall that the speculative execution approach involves ensuring that, whenever a specula-
tive execution is actually executing, it will be running ahead of its target normal execution.
The approach includes this clause in order to prevent speculative executions from wasting
resources running behind or, on a multi-processor, in synchrony with their target normal
executions (when they would not be able to generate useful prefetches). Thus, a design for
adding speculative executions should ensure that, before resuming a speculative execution
after it has fallen behind its target normal execution, the speculative execution will first be
resynchronizedwith its target normal execution. That is, it should ensure that the specula-
tive execution’s execution state (e.g. its program counter, register values, stack, and other
data values) is updated to be identical to that of its target normal execution, such that the
speculative execution is prepared to run ahead of its target normal execution.

I will refer to the actual process of updating a speculative execution’s execution state
as a design’sresynchronization method. For example, in a design based on forking (like
the ones sketched in Section 3.2.2), the resynchronization method may simply involve re-
forking a new speculating process from the target normal execution’s process, and termi-
nating any old speculating process. Notice that a design’s resynchronization method should
be as efficient as possible because cycles spent resynchronizing will either slow down nor-

4.1. DESIGNING FOR EFFECTIVENESS 45

mal execution (if resynchronizing involves adding work to normal execution), or reduce
the number of cycles speculative execution can use to run ahead of normal execution (if
resynchronizing involves adding work to speculative execution).

I will refer to a design’s choice of when to resynchronize as the design’sresynchro-
nization policy. Notice that, to properly implement the approach on a multiprocessor, if
speculative execution is slower than its normal execution (e.g. because work was added to
speculative execution), then a speculative execution that has fallen behind its target normal
execution should not be resynchronized and resumed, even if there are spare cycles, until
its normal execution blocks. The rest of this section focuses on resynchronization poli-
cies for uni-processors, where a speculative execution will only execute while all normal
executions are blocked.

One possible policy would be to resynchronize speculative executions with their tar-
get normal executions whenever their target normal executions block. Since (on a uni-
processor) speculative execution only proceeds when all normal executions are blocked,
this policy would ensure that speculative executions will always run ahead of their target
normal executions. On the other hand, this policy is pessimistic in that it may resynchro-
nize speculative executions more frequently than necessary, i.e. it may resynchronize a
speculative execution that is already ahead of its target normal execution. In particular,
consider the following scenario. While a normal execution is blocked, its speculative ex-
ecution runs ahead, issues a prefetch call for some data, and then continues running even
further ahead of the target normal execution. After a while, the target normal execution
unblocks, preempting the speculative execution. The target normal execution then requests
the data prefetched during speculative execution. If the speculative execution did not issue
the prefetch call early enough that the data has already been completely fetched, then the
target normal execution will block waiting for the fetch to complete. Notice that, in this
case, when the target normal execution blocks, the speculative execution will still be ahead
of the target normal execution. Resynchronizing the speculative execution with its target
normal execution may simply force it to waste cycles repeating all the work it performed
since issuing the prefetch call (plus any cycles spent actually resynchronizing), such that
it would issue subsequent prefetch calls later, and may have insufficient cycles to issue as
many subsequent prefetch calls, than it otherwise would. (In addition, if it has issued any
prefetch calls since the original prefetch, resynchronizing may cause it to re-issue those
prefetch calls, which could be problematic on some systems.) Thus, resynchronizing every
time a target normal execution blocks may be suboptimal.

On the other hand, a speculative execution that is running ahead of its target normal
execution may be so affected by the incorrect data values in its execution state that it will
be unable to generate additional correct prefetches until after it is resynchronized again. I
will say that such a speculative execution has “strayed”. (Notice that, whenever a spec-
ulative execution is resynchronized with its target normal execution, it will acquire all
runtime values that were previously determined during its target normal execution, such
that it will be immune to all prior data dependencies.) Even worse, a speculative execu-
tion that has strayed may generate arbitrary numbers of incorrect prefetches, which could

46 CHAPTER 4. DESIGN GOAL: EFFECTIVENESS

hurt performance by increasing contention for memory and I/O bandwidth (as discussed
in Section 5.1.4). Therefore, it may sometimes hurt performance to not resynchronize a
speculative execution that is running ahead of its target normal execution.

What we would like, therefore, is a mechanism whereby speculative executions will be
resynchronized with their target normal executions only when they have either fallen be-
hind their target normal execution, or strayed. This raises the question of how to detect that
one of these situations has occurred. One method would be to cross-check some attribute
of theexecution pathstaken during speculative and normal execution. For example, assum-
ing the chosen attribute is “procedures called”, if normal execution calls some procedure
that was not called during speculative execution, then speculative execution must be either
behind normal execution, or on a different execution path (which indicates that it may have
strayed).

Being on a different execution path, however, does not always indicate that speculative
execution has strayed; differences in execution path are irrelevant unless they would prevent
speculative execution from generating correct prefetches. One attribute that would focus on
relevant differences in execution paths is the data accessed and identified during normal and
speculative execution, respectively. In particular, if normal execution attempts to access
some uncached data that was not prefetched by speculative execution, then speculative
execution must be either behind, or running ahead but failing to identify all the data that
should be prefetched. That is, failed cross-checks of this attribute evince that speculative
execution should be resynchronized.

I refer to resynchronization policies based on cross-checking the data accessed during
normal execution with the data identified during speculative execution aslazy resynchro-
nization policies. Figure 4.1 describes the basic algorithm behind lazy resynchronization
policies. Since resynchronization is triggered only upon detecting that speculative execu-
tion failed to prefetch some data it should have prefetched, these policies will not always
resynchronize speculative execution as soon as speculative execution strays. For the same
reason, however, unlike the policy of resynchronizing every time normal execution blocks,
these policies avoid resynchronizing speculative execution unnecessarily. Moreover, as-
suming normal execution only (mainly) blocks to access uncached data, these policies pre-
vent speculative execution from wasting (many) cycles executing behind normal execution.

4.1.2 Skipping unnecessary work

It may be possible for a design to increase the speed with which speculative executions
identify the future data needs of their target normal executions. This would increase the ef-
fectiveness of the design by enabling speculative executions to generate accurate prefetches
earlier and, possibly, to generate additional accurate prefetches within the spare cycles they
are allotted. The opportunity exists whenever a target normal execution will perform work
that will not affect what uncached data it subsequently accesses – for example, it a target
normal execution performs some work solely to generate some final output. Since per-
forming such work during speculative execution would not assist speculative execution to

4.1. DESIGNING FOR EFFECTIVENESS 47

SpeculativeD1 D2 D3 D4Normal
execution

Resynchronization

Identities of prefetched data

execution

Figure 4.1: Logically, lazy resynchronization policies involve a pipe from speculative execution
to normal execution, where the input to the pipe is what data was identified during speculative
execution. Normal execution attempts to consume an entry from this pipe whenever it is about
to access some data. If the data it is about to access is uncached and either there are no entries
in the pipe, or the next entry in the pipe does not identify this uncached data, then it triggers a
resynchronization because speculative execution is either behind normal execution, or is running
ahead but failing to identify the data it should prefetched.

generate accurate prefetches, a design could increase the speed with which speculative ex-
ecutions generate accurate prefetches by identifying suchunnecessary work, and causing
that work to be skipped during speculative executions.

Such a design might even enable speculative executions to be faster than their target
normal executions. On a multiprocessor with an unused processor that could be claimed
for speculative execution, this might enable a just-resynchronized speculative execution to
outstrip, and therefore generate useful prefetches for, its target normal execution.

A design might, as a simple heuristic, identify and skip work common to many ap-
plications that is usually unnecessary. Examples of such work include executing standard
library output routines, likeprintf . Uniformly eliding calls to such routines may be only
a heuristic because, for example, many of these routines set a return value and/or other data
values which might be used during some normal execution. Simple local static analysis
may serve to ensure that return values, for example, will not be used during normal ex-
ecution before eliding some call from speculative execution. In addition, a design might
cause speculative execution to skip standard libraryassert calls because speculative ex-
ecution is likely to failassert calls that normal execution will not fail (since it depends
on incorrect data values), and failing such a call would prevent speculative execution from
generating more prefetches until it resynchronizes again.

On the other hand, such heuristics will not suffice to identify unnecessary work that
is application-specific. One potential approach to identifying application-specific unneces-
sary work would be to rely on static analysis. In particular, in program analysis parlance,
an executable backwards slice[69, 61] of a program consists of an executable subset of
the program’s code that contains all the code that may affect the value of a particular vari-
able at a particular program point. A speculative execution design, therefore, would like
to cause speculative execution to skip all code except the combined executable backwards
slices of all arguments to system calls that may influence the data requests issued by an
application (e.g.read , open , lseek , etcetera). One standard procedure for extracting

48 CHAPTER 4. DESIGN GOAL: EFFECTIVENESS

program slices is to build asystem dependence graph(SDG) [21] for the program. A SDG
captures both the control and data dependencies in an application, allowing a slice to be
computed using basic reachability analysis. In order to build a SDG that will yield useful
slices, however, good alias analysis is required. While it may be possible to build such a
SDG from source code, the state of the art in alias analysis of binaries [7] is not adequate
for this purpose. Therefore, unless it requires source code, a speculative execution design
cannot rely on existing program slicing technology to identify the unnecessary work that
can be skipped during speculative execution.

A design for adding speculative executions, however, is free to employ techniques that
may cause speculative execution to diverge further from normal execution (although, to be
effective, it should do so only if those techniques would allow speculative executions to
hide more I/O latency). Therefore, rather than being limited by existing program slicing
techniques, which must be conservative in order to preserve correctness, a design could at-
tempt to identify unnecessary work through experimentation during speculative execution.
That is, a design could cause speculative execution to test dynamically whether skipping
some work improves or hurts its ability to generate correct prefetches as rapidly as possi-
ble. Information gathered during one execution on what work is unnecessary could even be
stored and used by future executions [22].

I use the termexperimental slicingto refer to dynamic testing-based mechanisms for
identifying and skipping unnecessary work. To reduce the amount of work that an experi-
mental slicing mechanism adds during speculative execution, a mechanism might include
a static component that identifies the chunks of application code that are likely to corre-
spond to substantial amounts of unnecessary work, and are therefore good candidates to
test dynamically. The ideal set of such chunks of code would contain all the code that is
unnecessary during speculative execution, in the largest (and fewest) possible chunks of
code. Larger chunks are desireable because there is likely to be some per-chunk overhead
to testing dynamically whether it is beneficial to skip a chunk. On the other hand, depend-
ing on how chunks are proposed, since larger chunks contain more code, they may be more
likely to include some necessary code.

The dynamic component of an experimental slicing mechanism is determining, through
testing during speculative execution, which chunks do not contain any necessary code, and
causing these chunks to be skipped in order to increase the speed at which speculative
execution generates correct prefetches. Specifically, such a mechanism might perform a
series of tests, comparing the speed with which correct prefetches are produced when each
chunk is skipped versus not skipped. Ideally, such a mechanism would identify the “I/O
kernel” of the application; i.e. the subset of the application code that affects what data
will be requested during normal execution. Such a mechanism suggests one way a design
for adding speculative executions could easily harness arbitrary numbers of under-utilized
processors on a multi-processor; it could perform these tests in parallel.

4.1. DESIGNING FOR EFFECTIVENESS 49

4.1.3 Increasing the effectiveness of stale values

A speculative execution introduces potentially incorrect data values into its execution state
whenever it performs some operation that differs from the operation that would be per-
formed during normal execution. For example, if a speculative execution replaces what
would be a blocking file read call for uncached data with a non-blocking prefetch call for
that data, the memory buffer into which the data would have been read will probably, during
subsequent speculative execution, contain data values that differ from what that buffer will
contain during its target normal execution. As discussed in Section 3.1.2, such incorrect
data values may prevent speculative executions from generating accurate prefetches (i.e. if
the data that their target normal executions will access in the future depend on those incor-
rect values) and/or decrease the speed with which speculative executions generate accurate
prefetches (e.g. by causing speculative executions to iterate through a loop more times than
will their target normal executions).

I will refer to values, memory locations or register as “stale” if they may be/contain an
incorrect data value. In a simple design, during its computations, speculative executions
would use whatever values happen to reside in memory locations and registers, regardless
of whether they are stale or how those values were computed. It may be possible, however,
that a design could, by causing speculative executions to instead select values for stale
registers and memory locations, increase the accuracy of the prefetches they generate and/or
the speed with which they generate accurate prefetches. I will refer to values that would
enable such increased effectiveness as more “effective” values. Selecting more effective
values is similar to value prediction [33] except that the goal of value prediction is to predict
the correct value. Figure 4.2 gives a few examples of scenarios in which it may be possible
to select a more effective value, including an example of when a more effective value would
probably differ from the correct value.

It may also be possible to increase the effectiveness of a design by causing speculative
executions to select more effective values for registers and memory locations that arenot
stale. (For example, in Figure 4.2A, even if the correct value ofdatastruct[i].num
was known, a zero value would be most effective.) Unlike selecting more effective values
for stale registers and memory locations, however, such a mechanism could only increase
the set of stale values in a speculative execution’s execution state. Therefore, it could not
increase the prefetching accuracy of speculative executions, only their speed, and is just
another mechanism through which a design might attempt to skip unnecessary work (in
addition to the ones discussed in the previous section). The rest of this section focuses on
increasing the effectiveness of stale values.

A design could exploit the fact that is possible to predict the most likely return value
for many standard library routines. Considerread calls, for example. The parameters to
a read call specify a file descriptor, the buffer in which the data should be placed, and the
number of bytes that should be read. In most cases, the return value from aread call will
be either the specified number of bytes to read, or the number of bytes from the file pointer
associated with the specified file descriptor to the end of the file. Therefore, knowing the
file pointer and the length of the file, it would be possible to calculate the likely return

50 CHAPTER 4. DESIGN GOAL: EFFECTIVENESS

for (i=0; i < NUM_FILES; i++) {
 fd = open(filename[i], O_RDONLY);

 ... process data in buf ...
 }
}

 while (read(fd, buf, bufsize) != 0) {

read(fd, datastruct, datastructsize);
if (datastruct.flag) {

(A)

} else {

}

 ... a read request at some offset ...

 ... a read request at a different offset ...

for (i=0; i < NUM_FILES; i++) {
 read(fd[i], datastruct[i], datastructsize);
 for (j=0; j < datastruct[i].num; j++) {

 }
}

 ... work that does not affect future read requests...

(B)

(C)

Figure 4.2: Examples of code for which it may not be difficult to increase the effectiveness of
speculative execution by selecting more effective stale values. In (A), regardless of the correct
value fordatastruct[i].num , a zero value would be most likely to increase the effectivness
of speculative execution. In (B), if the return value of theread call does not indicate when the end
of the file has been reached, speculative execution will not be able to generate prefetches for the
next file. In (C), ifdatastruct.flag is not equally likely to be zero or non-zero, then the more
likely of these would be a reasonable selection.

value. This example is particularly relevant for speculative execution designs because it is
not uncommon for programs to include a loop which issuesread calls to a file until the
return value indicates that the end of the file has been reached (as shown in Figure 4.2B).
For such programs, it is necessary to calculate the return values forread calls correctly in
order to enable speculative execution to both generate prefetches for all the data read from
such a file, and then exit the loop such that it can generate additional accurate prefetches. As
another example, since most calls are successful, and return values that indicate failure can
cause disruptive error handling code to be executed, predicting return values that indicate
success may tend to be more effective.

In other cases, it may not be so easy for a design to increase the effectiveness of stale
values. A “context-sensitive” approach would be to decide what value to use based on how
the value is used. For example, in executing a loop, if a stale value determines the number of
loop iterations, then a reasonable heuristic would be to predict a value that would cause the
loop to iterate zero or one times. In particular, if the exact number of iterations matters, then
it is unlikely that the correct value could be identified but, if the exact number of iterations

4.1. DESIGNING FOR EFFECTIVENESS 51

does not matter, then zero or one iterations would require the least work. Notice, however,
that this reasoning only applies if the number of loop iterations is determined by a stale
value. If a design can detect through static analysis that the number of loop iterations will be
determined by a stale value, then the design may be able to incorporate this heuristic easily.
Otherwise, it probably will not be worthwhile for a design to incorporate this heuristic
since, without tags on memory locations and registers, keeping track of which values are
stale during the course of speculative execution would add a lot of work to speculative
execution.

An alternative, “context-insensitive” approach would be to decide what values to use
whenever speculative execution introduces new stale values into its execution state. In par-
ticular, whenever speculative execution does not issue a system call that would fill some
specified memory buffer (e.g. aread call), it could select what values to place in that
memory buffer. Subsequent speculative execution would propagate the effect of these se-
lected values automatically. This approach does not leverage information about how values
will be used, but does not require static analysis or the runtime overhead of tracking which
values are stale. Two possible strategies for setting the contents of such input buffers would
be to either: 1) pre-select the values with which to fill buffers, or 2) dynamically select
values based on the values obtained via prior, similar calls during normal execution. The
first strategy assumes that there is some value that is, in general, more effective than what-
ever values will happen to be in such buffers. The second assumes that, for example, there
is similarity between the data obtained from multipleread calls that requested the same
amount of data (which may be reasonable if, for example, the data is structured).

4.1.4 Scheduling amongst speculative executions

The prior sections have focused on how to improve the effectiveness of individual specula-
tive executions. This section briefly discusses additional issues when multiple speculative
executions occur concurrently.

Since speculative execution is strictly unnecessary, it does not make sense to require
fairness when dividing available resources amongst speculative executions. A more rea-
sonable goal would be to divide resources in a manner that would yield the greatest com-
bined performance benefit. This may inherently bias against fairness in resource allocation
for several reasons. First, speculative executions will vary in how rapidly they generate
accurate prefetches and, given that there are a limited number of spare processing cycles,
scheduling speculative executions that generate accurate prefetches more rapidly will tend
to provide more benefit. Second, if memory resources are not so abundant that the working
set of all normal and speculative executions fits in memory, then scheduling a speculative
execution whose working set is in memory and can generate accurate prefetches will tend
to provide more benefit. Third, if the data required by each execution tends to be physically
proximate on disk, which is often the case, then allowing a scheduled speculative execution
that is generating accurate prefetches to continue generating accurate prefetches will tend

52 CHAPTER 4. DESIGN GOAL: EFFECTIVENESS

to provide more benefit (by decreasing disk positioning overhead).1

This suggests that one reasonable strategy for scheduling amongst multiple speculative
executions is to schedule, at some coarse granularity, the speculative execution that would
generate accurate prefetches most quickly. If the speed with which any speculative execu-
tion generates accurate prefetches tends to stay the same, then this will tend towards job
scheduling. A design might predict how quickly each speculative execution would gener-
ate accurate prefetches based on: 1) how quickly it has generated accurate prefetches in
the recent past, 2) how many accurate prefetches it was able to generate after each resyn-
chronization in the past, and 3) whether the speculative execution has already generated
accurate prefetches for the remaining data needs of its target normal execution.

4.2 Effectiveness in SpecHint

This section begins the in-depth description of the SpecHint design and implementation.
Recall, from Section 3.2.3, that the SpecHint design is based on binary modification. It
assumes a typical UNIX operating system plus support for I/O prefetching, and does not
require any operating system modifications. It is targetted at single-threaded applications,
and adds a new speculating thread to each target process (which performs speculative exe-
cution on behalf of the target process’s original thread).

This section describes the mechanisms in the design and implementation that pro-
mote effective speculative execution. Section 4.2.1 describes basic support for generat-
ing prefetches, Section 4.2.2 describes the resynchronization policy, and Section 4.2.3
describes the resynchronization method. Sections 4.2.4 and 4.2.5 describes an optional
experimental slicing mechanism and an optional stale value mechanism in the SpecHint
implementation.

4.2.1 Prefetch generation

The speculating thread issues prefetch calls in place of read calls. The design assumes that
the operating system provides prefetch system calls that expect data to be specified using a
file offset, the number of bytes to prefetch, and either a file descriptor or a file name. Two
issues arise in enabling speculating threads to specify the appropriate data in prefetch calls.

First, as further discussed in Chapter 6, the speculating thread is not allowed to issue
open system calls in order to prevent it from stealing file descriptors from the original
thread. Therefore, to enable it to specify the appropriate file in prefetch calls, the specu-
lating thread selects and propagates fake file descriptors rather than issuingopen system
calls, and keeps track of the mapping between these fake descriptors and the file path names
that were passed toopen calls.

Second, unlikeread and readv calls, a prefetch call expects an offset argument.
Also, as further discussed in Chapter 6, the speculating thread is not allowed to issue any

1This discussion assumes that the I/O system services demand fetches before prefetches, as discussed in
Section 5.1.3.

4.2. EFFECTIVENESS IN SPECHINT 53

system calls which could change a file pointer (e.g.lseek) in order to prevent it from
changing the file pointers that will be used during normal execution. Therefore, to enable it
to specify the appropriate file offset in prefetch calls, the speculating thread maintains file
pointers for itself at user-level. Specifically, the speculating thread obtains the actual offset
associated with each (real) file descriptor when it resynchronizes with its original thread,
and keeps track of how the offset associated with each (real or fake) file descriptor would
change as it runs ahead of its target normal execution (e.g. it updates the appropriate offset
rather than issuing anlseek system call).

In addition, for the reasons discussed in Section 4.1.3, the speculating thread calculates
the probable return values of file read calls, based on its user-level file pointers and file
length information that it obtains by issuingstat and fstat system calls. The specu-
lating thread also uses probable return values that would indicate success for other elided
system calls (e.g. it uses its user-level file pointers to select the return value of elided
lseek system calls), and triggers resynchronization in place of non-returning system calls
(i.e. exit calls). Finally, for the reasons discussed in Section 4.1.2, the speculating thread
skips standard libraryassert calls and, rather than executing standard library output calls
(e.g.printf , fwrite , andflsbuf), simply appears to return from these calls with ap-
parently successful return values.

The SpecHint implementation

My implementation of the SpecHint design relies on the TIP informed prefetching and
caching system. The prefetch calls supported by TIP do not return any data, even if all
of the specified data is in memory. My implementation might be more effective for some
applications if the prefetch calls accepted an argument specifying a buffer and placed any
portions of the specified data that happened to be in memory in the appropriate positions
within that buffer.

4.2.2 Resynchronization policy

The SpecHint design incorporates a lazy resynchronization policy (see Section 4.1.1). In
particular, resynchronization is triggered whenever there is a mismatch between the data
that the original thread specifies in a file read call, and the data that the speculating thread
specified in prefetch calls. Anticipating that files which are opened will subsequently be
accessed, resynchronization is also triggered whenever there is a mismatch between the
files opened by the original thread and theopen calls elided by the speculating thread. Fi-
nally, resynchronization can be triggered in a variety of other (error-related) circumstances
described in Section 6.3, e.g. if the speculating thread triggers an exception.

To implement its lazy resynchronization policy, the speculating and original thread
communicate through a circular log (which I refer to as theprefetch log), a data struc-
ture mapping fake file descriptors to file path names (which I refer to as thename map),
and a boolean flag (which I refer to as theresynchronize flag). (The name map is also used

54 CHAPTER 4. DESIGN GOAL: EFFECTIVENESS

while generating prefetches, as discussed in the previous section.) Whenever the speculat-
ing thread encounters what would have been anopen call, it adds an entry to the prefetch
log specifying the fake file descriptor it generates, and updates the name map. Whenever
the speculating thread encounters what would have been a file read call, it adds an entry to
the prefetch log specifying the (real or fake) file descriptor, offset and length. Whenever
the original thread issues anopen call, it checks whether there is an unconsumed entry in
the prefetch log, whether the next unconsumed entry is for anopen call, and whether that
entry indicates the file that the original thread is opening. If so, it keeps track of the map-
ping from fake file descriptors to real file descriptors; if not, it sets the resynchronize flag.
Whenever the original thread is about to issue a file read call, it checks whether there is an
unconsumed entry in the prefetch log, whether the next unconsumed entry is for a file read
call, and whether that entry indicates the data that the original thread is about to request. If
not, it sets the resynchronize flag. The speculating thread polls the resynchronize flag and,
upon finding the flag set, executes its part of the resynchronization method (described in
the next section).

To enable the original thread to determine efficiently whether an entry specifies the data
it is about to read, the original thread keeps track of the current value of its file pointers
at user-level (just as does the speculating thread, as described in the previous section).
As a final implementation note, to ensure that the speculating thread actually polls the
resynchronize flag – i.e. that it cannot get stuck in a loop such that it would be unable
to generate additional useful prefetches – the application binary is modified such that the
speculating thread will poll the resynchronize flag during each iteration of every loop it
executes that could be an infinite or long-running loop.

4.2.3 Resynchronization method

The SpecHint design’s resynchronization method involves a trivial amount of work by the
original and speculating threads (as indicated by the results in Table 8.8). The design allows
resynchronization to occur only while the original thread is blocked on a file read call.

The work performed by the original thread is as follows. Before issuing a file read call,
the original thread checks whether the resynchronize flag or theabort flag is set. The
resynchronize flag is set by the lazy resynchronization policy as described in the previous
section, and the abort flag is set whenever resynchronization is triggered by something
other than the lazy resynchronization policy, (i.e. by any of the circumstances described in
Section 6.3, like the speculating thread triggering an exception). If either of these flags is
set, then the original thread saves the values of all its live registers in an array I refer to as
theregister store, and increments a counter I refer to as thein-read counter, before issuing
the file read call. The live registers include all the callee-saved registers (including the
stack pointer), the registers that contain the arguments to the file read call, and its program
counter. Upon returning from the file read call, it increments the in-read counter again.

The work performed by the speculating thread is as follows. First, the speculating
thread cleans up behind previous speculative execution. In particular, as further described

4.2. EFFECTIVENESS IN SPECHINT 55

in Section 6.3.2.2, in order to prevent itself from introducing memory leaks, it releases all
the memory it has allocated dynamically, re-initializing its data structures appropriately.
Also, if resynchronization was triggered because an incorrect prefetch was detected, the
speculating thread disowns all prior prefetches. That is, if the resynchronize flag is set, it
cancels all unconsumed prefetches, and empties the prefetch log (i.e. changes the value of
the variable which stores the index of the last unconsumed entry).

Next, it attempts to update its execution state to be logically identical to that of the
original thread. This is complicated by the fact that the original thread could unblock at
any time and change its execution state, such that the speculating thread may update its
state inconsistently. On the other hand, it is simplified by the fact that the original and
speculating threads share an address space, such that the speculating thread’s execution
state can be made logically identical to that of the original thread simply by updating its
program counter, register values, stack, and user-level file pointers (discussed in the last
section). The actual process is as follows. First, it loads the value of the in-read counter
until that value is odd. An odd value indicates that the original thread is currently blocked
on a file read call, such that the values in the register store are consistent with the values in
the original thread’s stack. Next, it replaces its stack and user-level file pointers with a copy
of the original thread’s stack and user-level file pointers, and replaces its register values as
indicated by the register store. Based on the values in the register store, it also updates
the return value register, and its user-level file pointer for the file that the original thread
is currently reading, to reflect what they will probably be when that read complete. (As
previously discussed, this involves anfstat call to obtain the length of the file.) Then,
it checks if the value of the in-read counter has changed. If so, then the original thread
unblocked while the speculating thread was updating its state, which means that the state
the speculating thread copied contains inconsistencies, so the speculating thread repeats this
process (i.e. it begins waiting for the value of the in-read counter to become odd again).
Otherwise, it knows that its state is consistent, so it begins running ahead of the original
thread by jumping to the appropriate address in the code (i.e. after the file read system call
on which the original thread is blocked).

To avoid wasting cycles that could be better used by other speculating threads, the
speculating thread yields whenever it is waiting for the value of the in-read counter to
become odd and the value it loads is even. Notice that this will only occur if the original
thread is not blocked on a file read call.

If only the abort flag is set, the speculating thread will not empty the prefetch log.
Therefore, after the speculating thread is resynchronized, there may still be valid entries in
the prefetch log (i.e. the speculating thread may be behind the furthest ahead it has ever
speculated). In this situation, as the speculating thread executes, it will not add entries to
the prefetch log, or re-issue prefetches, in place ofopen system calls or file read calls
that match the entries in the prefetch log. Furthermore, it will use the fake file descriptors
indicated by the entries foropen calls. If a mismatch occurs, it will cancel the prefetches,
and remove the entries, starting from the mismatched entry. At that point, or after running
past all the entries in the prefetch log, it will resume writing entries and issuing prefetches.

56 CHAPTER 4. DESIGN GOAL: EFFECTIVENESS

Finally, for reasons discussed in Section 6.3, the SpecHint design causes there to be,
in each transformed application binary, two copies of the code in the original application
binary. The “original code” will be executed by the original thread, while its extensively
modified copy, which I refer to as “shadow code”, will be executed by the speculating
thread. Thus, when the speculating thread jumps to the appropriate address to begin run-
ning ahead of the original thread, it actually jumps to an address in shadow code. In order
to enable the speculating thread to determine the appropriate address in shadow code, the
binary modification tool calculates the mapping from the address after each file read sys-
tem call in original code to the address after the matching elided file read system call in
shadow code, and includes an initialized global data structure in the transformed binary
that contains these mappings. One further issue is that return addresses are typically stored
in the stack, and the return addresses stored in the original thread’s stack will indicate ad-
dresses in original code rather than shadow code. As further described in Section 6.3.1.4,
the design addresses this issue by causing the speculating thread to map return addresses
in original code to return addresses in shadow code (once again, using an initialized global
data structure included in the transformed binary that contains these mappings).

The SpecHint implementation

As discussed in Section 2.2.3.1, the TIP system allows and requires explicit cancellation
of incorrect prefetches. It supports cancellation of either all unconsumed prefetches issued
by a process, or the first unconsumed prefetch issued by a process. Therefore, my imple-
mentation causes speculating threads to issue a call to cancel all unconsumed prefetches
whenever they empty their prefetch log. However, because TIP does not provide a mech-
anism for cancelling all prefetches after some unconsumed prefetch, my implementation
causes speculating threads to simply assume the correctness of any entries in the prefetch
log added before the speculating thread last resynchronized.

4.2.4 Experimental slicing

The SpecHint implementation includes, as an optional element, an experimental slicing
mechanism. As described in Section 4.1.2, an experimental slicing mechanism enables
speculating threads to identify and skip application-specific unnecessary work by dynam-
ically testing whether skipping some work increases the speed at which they generate ac-
curate prefetches. For the experimental slicing mechanism in the SpecHint implementa-
tion, the SpecHint tool modifies the binary such that the speculating thread can attempt to
skip loops; that is, the SpecHint tool does not perform any static analysis to identify what
chunks of code are more likely to correspond to unnecessary work. The rest of this section
describes the dynamic component of the implemented mechanism.

To make it easier to interpret the results of a test, chunks are tested one at a time. The
more processing cycles the speculating thread spends in a chunk, the greater the benefit will
be if the speculating thread is able to skip that chunk. Conversely, testing a chunk in which
the speculating thread spends a negligible number of cycles is a risk (because skipping

4.2. EFFECTIVENESS IN SPECHINT 57

the chunk could prevent the speculating thread from generating accurate prefetches) for
little possible reward. Therefore, to determine which chunks to test when, the speculating
thread keeps track of roughly how many cycles it spends in each chunk per resynchro-
nization. Non-terminating chunks (i.e. a non-terminating loop), and aborting chunks (i.e. a
chunk that triggered an exception) are considered to have taken an infinite number of cycles
since they stop the speculating thread from generating additional prefetches until it resyn-
chronizes again. Then, chunks are tested in order from most processing cycles to some
threshold amount of cycles per resynchronization (in my implementation, this threshhold
is arbitrarily set at 10% of the cycles during an average disk access time).

A test involves resynchronizing and executing while skipping the tested chunk, and then
resynchronizing and executing while not skipping the tested chunk. The speculating thread
keeps track of the speed at which correct prefetches are produced during each phase of the
test and concludes that the tested chunk contains only locally unnecessary code if the speed
of the former is substantially greater than the speed of the latter. Only a local conclusion
can be drawn because a chunk that is necessary at one point during the execution may be
unnecessary at another point, or vice versa. This possibility can be accomodated through
retesting, although there is insufficient time during an execution to attempt a full-fledged
on-line learning algorithm for noisy, non-stationary environments. On the other hand, there
is an overhead to retesting a chunk that has been correctly categorized as necessary or
unnecessary because, during the test phase that corresponds to the other category, fewer
correct prefetches will be generated. Therefore, the frequency of retests is limited.

Drawing even a local conclusion based on the relative speed at which correct prefetches
are produced during the phases of a test can be deceptive since the test phases correspond
to different segments of normal execution. Therefore, a difference in the measured speeds
may have nothing to do with whether or not the tested chunk is skipped. Instead, it may
reflect a difference in the speed at which normal execution could produce reads during
these two segments, or a difference in the dependencies on data that are unavailable to the
speculating thread during these two segments. A more conclusive test would be to compare
the speeds at which correct prefetches are produced while skipping and not skipping the
tested chunk over the same segment of the execution. While this would hurt effectiveness
on a uni-processor since it would essentially halve the speed of speculative execution, it
would be one way to take advantage of an under-utilized multi-processor.

4.2.5 Stale value selection

The SpecHint implementation also includes, as an optional element, a simple context-
insensitive stale value selection mechanism (see Section 4.1.3). In particular, if the resyn-
chronization policy has detected that the speculating thread generated incorrect prefetches,
then the speculating thread attempts to improve its ability to generate accurate prefetches
by logically setting the contents of the buffers that would have been specified in file read
calls to a certain value (e.g. to zero). Rather than incurring the cost of actually setting the
contents of these buffers, which may involve a substantial amount of work if the buffers

58 CHAPTER 4. DESIGN GOAL: EFFECTIVENESS

are large, the implementation leverages a mechanism specified by the SpecHint design to
implement this stale value selection mechanism efficiently. The mechanism it leverages is
described in Section 6.3.1.1. For the purposes of this section, the relevant aspect of this
mechanism is that its implementation in the SpecHint design requires that the speculating
thread execute some code before almost every load and store instruction, and that this code
can redirect the subsequent load or store. The implementation leverages this mechanism by
allocating some memory, initializing it to contain the selected value, and then redirecting
loads from buffers that would have been specified in file read calls since the last resynchro-
nization to instead load from this initialized memory.

4.3 Summary

The effectiveness of a design for adding speculative execution is mainly determined by how
quickly and accurately the design enables speculative executions to generate prefetches for
the uncached data that will be accessed during their target normal executions. The speed
with which speculative executions will generate accurate prefetches is mainly determined
by: 1) how quickly and frequently speculative executions are resynchronized with their tar-
get normal executions, 2) how much extra work speculative executions perform to support
speculative execution, and 3) how much work speculative executions skips because it is
unnecessary for generating accurate prefetches. The accuracy with which speculative exe-
cutions will generate prefetches is mainly determined by: 1) when speculative executions
are resynchronized with their target normal executions, and 2) when and what possibly
incorrect data values are introduced into speculative execution’s execution state.

The chapter discusses three methods in which to increase the effectiveness of a design.
It describes a resynchronization policy that avoids resynchronizing unnecessarily. In partic-
ular, the lazy resynchronization policy triggers resynchronization only upon detecting that
speculative execution is behind, or has failed to prefetch some uncached data that its target
normal execution attempts to access. It proposes heuristics and potential mechanisms for
enabling speculative execution to skip work that it does not need to perform to generate ac-
curate prefetches. It also proposes heuristics and potential mechanisms for selecting stale
values that will increase the effectiveness of speculative execution.

Then, the chapter describes the mechanisms in the SpecHint design and implementa-
tion that are focused on increasing effectiveness. In particular, speculating threads will
issue prefetch calls in place of read calls, skip unnecessary standard library calls, and use
probably correct return values for skipped system and library calls. The design incorpo-
rates the lazy resynchronization policy, and an efficient resychronization method. Finally,
the chapter describes two optional mechanisms in the SpecHint implementation. An ex-
perimental slicing mechanism attempts to enable speculating threads to identify and skip
unnecessary work that is application-specific, and a simple stale value selection mecha-
nism attempts to increase the effectiveness of speculating threads by logically filling stale
memory buffers with some pre-selected value.

Chapter 5

Design goal: Low overhead

The overheadof a design for adding speculative execution is the amount by which it in-
creases the execution times of normal executions. The overhead of a design is important
because, even if the design is only sporadically effective, it may still be attractive if it can
guarantee that it will never incur a noticeable amount of overhead. Conversely, it seems
unlikely that a design will be adopted if, for example, it will sometimes cripple the per-
formance of a system. This chapter focuses on issues related to the design goal of low
overhead. Section 5.1 discusses the ways in which a design can incur overhead and the
issues with limiting a design’s overhead. Section 5.2 discusses some ways in which the
SpecHint design was shaped by the goal of low overhead.

5.1 Designing for low overhead

There are two ways that a speculative execution design could hurt the performance of a
normal execution. First, it could directly increase the amount of work performed during
that normal execution. Second, as a side effect of increasing contention for shared machine
resources, it could hurt the performance of that normal execution by disrupting the ability
of that normal execution to claim or hold a shared resource.

The first can be avoided by following a simple rule of thumb: whenever possible, a de-
sign should ensure that any work it adds is performed during speculative execution rather
than normal execution. The SpecHint design described in detail in this dissertation demon-
strates that, by following this rule of thumb, it is possible to develop a design that will avoid
increasing the work performed during normal execution by a noticeable amount.

The second is harder to avoid. There are three ways in which speculative execution
designs can increase resource contention. First, performing speculative execution (and any
additional work during normal execution) will consume processing and memory resources,
and may consume I/O resources. Second, if speculative execution initiates prefetching,
the prefetches will consume memory and I/O resources. Finally, if these prefetches suc-
cessfully decrease the I/O latency experienced by target normal executions, then the target
normal executions will be able to proceed more rapidly, increasing the rate at which they

59

60 CHAPTER 5. DESIGN GOAL: LOW OVERHEAD

will demand shared resources. In this dissertation, I assume that the performance of target
normal executions is of primary importance, such that this last is acceptable. (As an ex-
ample of how this issue might be addressed, Demke and Mowry [8] have demonstrated an
approach that enables prefetching applications to release memory they will no longer need
in order to avoid displacing the data of concurrent applications as a consequence of de-
manding memory more rapidly.) The following subsections discuss the issues that arise in
attempting to develop a design that limits overhead as a side effect of increasing contention
for shared machine resource by performing speculating execution and issuing prefetches.

5.1.1 Processing cycles

The speculative execution approach calls for restricting speculative execution to consuming
spare processing cycles. Most modern operating systems do not provide a mechanism that
allows arbitrary executions to be restricted in this fashion. However, on most if not all sys-
tems, this restriction can be adequately approximated by setting the scheduling parameters
of speculative executions in some obvious way (e.g. by assigning speculative executions
the lowest possible scheduling priority). Moreover, since operating systems already support
idle threads that execute only during spare processing cycles, if a design is allowed to in-
clude kernel modifications, it should be easy to enforce the restriction exactly by modifying
the operating system to treat speculative executions as high-priority idle threads.

One other factor should be considered. On some operating systems, there are kernel
mode operations which are not preemptible and can take a long time to complete. A design
should not allow speculative execution to invoke such an operation. Otherwise, it would be
possible for a speculative execution to steal a noticeable number of processing cycles from
normal executions.

Forking is one example of an operation that, on some operating systems, is not pre-
emptible and can take a long time to complete. It warrants mention because it is easy to
imagine designs that rely on forking. For example, one possible design for adding spec-
ulative executions is to fork a child process for each target process and then use the child
processes to perform speculative execution. In such a design, an obvious way to help ensure
that a speculative execution will run ahead of its target normal execution is for the old child
process to be killed and a new child process forked every time the target normal execution
blocks. If a design for such a system is allowed to include kernel modifications, then it
may be possible to reduce the time it can take to re-fork a child process for the purpose
of speculative execution. Otherwise, a design that is not based on forking may be more
attractive. As described in Section 5.2.1, the SpecHint design is one example of a design
that does not rely on forking.

Finally, notice that restricting speculative execution to use only spare processing cycles
is not always optimal; there are scenarios in which prioritizing a speculative execution
over a normal execution would improve performance. Consider the example illustrated in
Figure 5.1. In this example, a target normal execution blocks when its speculative execution
would require only a few more cycles to generate an accurate prefetch for the uncached

5.1. DESIGNING FOR LOW OVERHEAD 61

R

Normal execution
Speculative execution
Disk

R R

Time

(b)

(a)

Normal execution
Speculative execution
Disk

R
P

Figure 5.1: One scenario in which, for optimal performance, speculative execution should be pri-
oritized over normal execution. (a) Shows how execution might proceed if speculative execution is
preempted by normal execution. (b) Shows how execution might proceed if speculative execution
is allowed to continue until it generates a prefetch for the uncached data that will next be requested
during normal execution.

data that will next be accessed during the target normal execution. If the normal execution
preempts the speculative execution, then the data will still be uncached when the normal
execution attempts to access it, such that the normal execution will be forced to stall waiting
for that data to be fetched into memory. On the other hand, if the speculative execution is
allowed to continue until it has issued the prefetch, then the data will be fetched while the
normal execution is processing, such that normal execution will not need to stall when it
attempts to access the data.

5.1.2 Memory

Speculative execution will consume memory resources both in order to access the code and
data it requires to execute, and to cache the data it causes to be prefetched. The affected
memory resources include the processor caches, TLB and main memory. It would be dif-
ficult for a speculative execution design to manage its usage of the processor caches and
TLB since these resources are hardware controlled. Fortunately, this should not be neces-
sary since the cost of a processor cache or TLB miss is so small (around 100 nanoseconds)
relative to the cost of an I/O. (Recall that concurrent normal executions will displace each
other’s cache and TLB entries regardless of speculative execution, so it is unlikely that
speculative execution will greatly increase the number of processor cache or TLB misses.)
On the other hand, a design’s consumption of main memory could substantially degrade
the performance of normal executions by causing them to experience additional I/O stalls.

Limiting the overhead a design can incur through increasing contention for main mem-

62 CHAPTER 5. DESIGN GOAL: LOW OVERHEAD

ory is much more difficult than limiting the overhead it could incur through consuming
processing resources. The equivalent to restricting speculative executions to consuming
spare processing cycles would be to restrict speculative executions to consuming memory
that would otherwise contain only data that could not possibly be re-accessed (e.g. unshared
heap and stack data for processes that have terminated). Unfortunately, such a restriction
would probably limit speculative executions to allocating so little memory that they would
be unable to deliver substantial performance benefits.

On the other hand, there may often be a substantial amount of memory filled with
data that could but will not be re-accessed before it is evicted from memory. I will refer
to this data as “inactive” data, as opposed to “active” data. To avoid adding overhead
by consuming memory, a design would ideally be able to predict whether claiming more
memory would cause any active data to be evicted, avoid claiming more memory when this
would be the case, and cause data that is in memory only because of speculative execution
to be evicted before any active data is evicted.

A design which is not allowed to require operating system modifications will have diffi-
culty even approximating this behavior because the mechanisms provided by most current
operating systems are inadequate. For example, most operating systems provide mecha-
nisms only to set hard and soft limits on the amount of memory that can be used by a
thread or process (e.g. via thesetrlimit call), and to obtain information like the per-
thread, per-process and system-wide amount of memory being consumed, and the number
and rate of page faults and disk requests (e.g. via thegetrusage andvmstat calls).1

With only these mechanisms, a design would be limited to crude heuristics. For example, a
design could set some threshold on how much memory speculative execution can consume,
but such a threshold would not protect against when the combined working set of all normal
executions is close to the size of memory (such that any additional contention for memory
could severely degrade system performance), and could needlessly cripple speculative ex-
ecution when more memory is available. As another example, a design could attempt to
deduce when it is consuming too much memory by observing the rate of page faults and/or
disk requests on the system. However, it would not be able to distinguish reliably between
when a these occurs because speculative execution is holding too much memory and when
they would have occurred regardless of speculative execution. Therefore, a design which is
not allowed to require operating system modifications has the poor choice of either risking
high overheads, or severely reducing the performance improvements it will deliver in order
to be conservative enough to avoid such a risk.

If a design is allowed to include operating system modifications, then better approxima-
tions may be possible. For example, the TIP prefetching and caching manager discussed in
Section 2.2.3.1 demonstrates how – by observing how frequently the system accesses data
that was just evicted, or is nearest to being evicted, from memory – an in-kernel system can
estimate the cost of claiming more memory. In addition, a design might modify the opera-

1Themanpages on several operating systems claim thatsetrlimit will allow a process to specify that
its memory be reclaimed preferentially if its resident size exceeds some amount. As far as I know, however,
only FreeBSD actually provides this functionality.

5.1. DESIGNING FOR LOW OVERHEAD 63

ting system to keep track of what data is in memory only because of speculative execution,
and make that data more likely to be evicted.

5.1.3 I/O bandwidth

A speculative execution design can increase contention for I/O bandwidth in two ways.
First, speculative execution will consume I/O bandwidth in order to page in the code and
data that it needs to execute, and to prefetch data. Second, speculative execution can cause
premature of eviction data that is needed during normal execution, such that additional I/Os
will be required to re-fetch that data. Increasing contention for I/O bandwidth can hurt the
performance of normal executions in two ways. First, since disks are not preemptive, if
a disk is servicing a request on behalf of speculative execution when it receives a request
on behalf of normal execution, the normal execution request must wait until the specula-
tive execution request completes, increasing its service time. Second, even if disks were
preemptive, simply having moved the disk head in order to service a speculative execution
request could increase the service time of the subsequent request.

Ideally, when a design is about to issue a speculative execution request to some disk,
it would be able to predict whether a normal execution request will be issued to that disk
before the speculative execution request could complete (and the disk arm be returned to
its original position), and, if so, delay issuing the speculative execution request. Rather
than attempting to predict when normal executions will issue disk requests, one way to
approximate this behavior would be to limit the maximum amount by which each normal
execution request could be delayed by speculative execution requests. For example, a de-
sign could limit the number of speculative execution requests queued for each disk to some
small number. In addition, on a system where queued disk requests can be reordered to
reduce total positioning time (e.g. most if not all SCSI disks), the design might also require
that speculative execution requests be issued only to disks at which no normal execution
requests are queued.

If a design is allowed to include operating system support, it should be easy to modify an
operating system to support this approximation. For example, as described in Section 7.1.1,
the software striper used by the TIP prefetching and caching manager [43] supports some-
thing similar.

A design which is not allowed to require operating system modifications would have
difficulty supporting this approximation because most operating systems do not expose ad-
equate information. First, since most operating systems hide the location of data, user-level
executions cannot detect whether a memory access will trigger a disk request. Therefore,
a design may be able to ensure that a speculative execution does not issue a disk request
only by blocking the execution. Second, even if a design could always determine when
speculative execution is about to issue a disk request, since most operating systems hide
the mapping of data to disks, the design would not be able to exploit multi-disk systems
fully. In particular, the only way such a design could prevent speculative execution requests
from being issued to disks that already have normal execution requests queued would be

64 CHAPTER 5. DESIGN GOAL: LOW OVERHEAD

to delay issuing any requests when any normal executions are blocked on I/O. Since the
potential benefits of I/O prefetching are larger on multi-disk systems precisely because
multi-disk systems allow prefetches to be serviced in parallel with demand requests, this
would severely reduce the performance improvements the design could deliver.

5.1.4 Useless I/O

Since it is difficult to guarantee that consuming memory and/or I/O bandwidth will not hurt
the performance of normal execution (for the reasons discussed in the prior two sections),
a design should attempt to avoid initiatinguselessI/O, where an I/O is considered useless
if it does not improve the performance of a normal execution.

A speculative execution can initiate two types of useless I/O directly: useless demand
fetches and useless prefetches. In addition, if the system is paging, it may write some or all
of a speculative execution’sprivate data(stack, heap and global data that is not shared with
any other execution) to swap space, such that a speculative execution could cause useless
writes.

A demand fetch initiated by a speculative execution is useless if no normal execution
accesses the fetched data before it is evicted from memory, and the speculative execution
either issues no more accurate prefetches or would not have needed that data to issue its
subsequent accurate prefetches. We know that a speculative execution’s private data will
not be accessed by a normal execution, so a demand fetch for a speculative execution’s
private data is useless unless the speculative execution subsequently uses that data to issue
accurate prefetches. Therefore, to reduce useless demand fetches, a design might include
mechanisms for predicting whether a speculative execution will produce no more accurate
prefetches, and preventing such a speculative execution from initiating demand fetches for
its private data. On the other hand, if speculative execution initiates a demand fetch for non-
private data (i.e. data it shares with another execution), the demand fetch itself may turn
out to be a prefetch for a normal execution. For example, in some designs, a speculative
execution might issue demand fetches for code pages that may subsequently be used by its
target normal execution.

Writes of a speculative execution’s private data are likely to prove useless because, as
discussed in Section 3.1, the private data of a speculative execution is replaced whenever
the speculative execution is resynchronized with its target normal execution. Therefore, a
design that is allowed to include operating system modifications might reduce its overhead
by not writing the private data of speculative executions to swap space. A design that is not
allowed to require operating system modifications will not be able to reduce its overhead in
this manner because current operating systems do not provide an appropriate mechanism.

The rest of this section discusses useless prefetches.

5.1.4.1 Useless prefetches

Recall that, whenever a speculative execution (running ahead of its target normal execution)
attempts to access some data that is not in memory, using a non-blocking operation in place

5.1. DESIGNING FOR LOW OVERHEAD 65

of what would have been a blocking operation during its target normal execution, the ap-
proach considers that data a reasonable candidate for prefetching. For each of theseprefetch
candidates, depending on the particular design, the speculative execution may or may not
initiate a prefetch. A design may cause speculative execution to not issue prefetches for
some of the prefetch candidates it uncovers in order to avoid hurting performance through
useless prefetches. However, if a design causes prefetch candidates to not be prefetched
when prefetches would have proven correct, then the design would have sacrificed some
performance benefit. Furthermore, since a useless prefetch may incur no overhead if there
is ample memory and I/O bandwidth, there are circumstances under which it may be worth-
while to issue a prefetch that seems likely to prove useless on the off-chance that it proves
correct. The rest of this section discusses how a design might predict the likelihood that a
prefetch will be useless, and when a design might decide whether to issue a prefetch that
seems likely to be useless.

Predicting correctness probability

If a design could detect when the data accessed during normal execution will depend on
data values that are incorrect during speculative execution, then it could eliminate all use-
less prefetches without sacrificing any correct prefetches. One possible approach would
be to pre-analyze the target application’s code. In particular, using static analyses, one
could attempt to identify what code might trigger a data access that might depend on data
values that might be incorrect during a speculative execution of that code. This approach
would probably work well for some simply-structured applications in which the existence,
or lack, of dependency between data accesses is easy to detect. However, for complex
applications, the imprecision of interprocedural analyses of complex code (as discussed in
Section 2.2.4.3) would probably lead to imprecise results – for example, rather than identi-
fying exactly which data accesses depend on incorrect data values, it might identify a large
superset of those accesses. Moreover, it might be difficult to extend this approach to take
advantage of the fact that the set of incorrect data values could shrink whenever speculative
execution is resynchronized with normal execution.

An alternative approach might be to detect whether a prefetch candidate depends on
any incorrect values by keeping track of such dependencies as speculative execution makes
progress. For example, speculative execution could maintain an incorrectness bit for each
register and memory location used during speculative execution, setting a register’s (or
memory location’s) bit whenever its value was changed based on a value that is already
marked as being incorrect. One problem with this approach is that it would require many
additional instructions to maintain the incorrectness bits. A more critical problem is that
it is unclear how speculative executions should handle control dependencies; that is, how
should the incorrectness bits be set after speculative execution encounters a conditional
branch instruction (an instruction which changes the program counter based on some value)
which depends on a value that is marked as being incorrect?

In lieu of these more complicated approaches, a design might simply attempt to predict
the probability that it would prove correct to prefetch a new prefetch candidate based on

66 CHAPTER 5. DESIGN GOAL: LOW OVERHEAD

observing whether it would have proven correct to prefetch prior prefetch candidates – i.e.
to use a history-based approach to predicting thecorrectness probabilityof new prefetch
candidates. I will refer to a prefetch candidate for which a prefetch would prove useless as
a “bad” candidate, and a prefetch candidate for which a prefetch would prove correct as a
“good” candidate.

There are many possible history-based approaches. The ideal approach would predict
a 100% correctness probability for every good prefetch candidate, and a 0% correctness
probability for every bad prefetch candidate. A good approach would predict a high cor-
rectness probability for all good prefetch candidates, and a low correctness probability for
a large number of bad prefetch candidates, such that it would be easy to eliminate a large
number of useless prefetches without reducing the number of correct prefetches. An ap-
proach that predicts the same correctness probability for all prefetch candidates would be
useless because it would not be helping to distinguish between good and bad candidates.
Finally, an approach which predicts a low correctness probability for a substantial number
of good prefetch candidates might be worse than useless because it could deceive specu-
lative execution into eliminating a large number of correct prefetches, which could greatly
decrease its performance benefit.

A simple history-based approach would be to predict that a new prefetch candidate’s
correctness probability is equal to the percentage of the speculative execution’s recent
prefetch candidates that were good, i.e. the ratio of good to total candidates during the
lastt seconds of this speculative execution. This approach would be cheap and easy to im-
plement either in the kernel or at user-level. It would also allow a speculative execution to
differentiate between periods of generating mostly good prefetch candidates and periods of
generating mostly bad prefetch candidates. However, if a speculative execution generates
a mix of good and bad prefetch candidates, and the mix is the same within everyt seconds,
then this approach will assign every prefetch candidate from that speculative execution the
same correctness probability. This might be somewhat useful in allowing the system to
differentiate between speculative executions that generate mostly good prefetch candidates
and those that generate mostly bad prefetch candidates, but (as discussed in the last para-
graph) it would be completely useless if no other speculative executions were taking place.

A more sophisticated approach, which is reminiscent of branch prediction techniques,
is to categorize prefetch candidates based on some features of the execution path taken
to generate the prefetch candidate. This approach makes sense because, as illustrated in
Figure 5.2, the execution path taken to generate a prefetch candidate determines whether
that prefetch candidate depended on incorrect data values. A prefetch candidate’s correct-
ness probability can then be predicted as, for example, the percentage of recent prefetch
candidates in the same category that were good.

The key design decision for such apath-based prediction approachis what set of fea-
tures to track. There are many possiblefeature sets, e.g. the address of the last read call,
the target address of the lastm control transfers, or the lastn return addresses on the stack.
The ideal feature set would, for all applications, be inexpensive to track and result in two
categories - one containing all the good prefetch candidates and one containing all the

5.1. DESIGNING FOR LOW OVERHEAD 67

for (i=0; i < N; i++) {
 read(fd, buf, size);
 f(buf);
}

for (i=0; i < N; i++) {

(B)

 read(fd, buf, size);
 lseek(fd, g(buf), SEEK_SET);
}

(A)

Figure 5.2: Example of how the execution path taken to generate a prefetch candidate determines
whether that prefetch candidate will be good or bad. In (A), iff() does not include any I/O calls,
speculative execution of this loop would always generate good prefetch candidates. In (B), if the
return value ofg() depends on the contents of its argument, speculative execution of this loop
would probably always generate bad prefetch candidates.

bad prefetch candidates. The more closely the mix of good and bad prefetch candidates
in a category approaches 50-50, the less useful that category will be for the purposes of
avoiding useless prefetches while issuing as many beneficial prefetches as possible. Notice
that, while many likely feature sets would be fairly easy to track in a user-level design, they
would often be much more complicated and expensive to track within a kernel-level design.

Deciding when to generate prefetches

There are a variety of ways to use the predicted correctness probabilities. The simplest is
to set some static threshold probability and issue prefetches for candidates with predicted
probabilities above that threshold. A static threshold approach is not ideal because the
likelihood that, and degree to which, a useless prefetch will hurt performance depends on
the abundance of memory and I/O bandwidth, which varies dynamically. Nevertheless, a
simple investigation of how one might set such a static threshold is instructive.

The most important factor in determining a static threshold is whether there is any
I/O concurrency. Consider the following simple performance model, which assumes that
the speculating application is the only application using the I/O system and that useless
prefetches never cause useful data to be ejected from memory (i.e. that there is abundant
memory). LetD be the number of disks,Tmiss be the average time to service an access
to uncached data, andTapp be the application-specific processing time between accesses to
uncached data. AssumeTapp=leTmiss and that, when a normal execution stalls on an I/O,
speculative execution identifies the next access to uncached data with correctness proba-
bility �. Also assume that, when there are multiple disks, no requests specify data that
span multiple disks, and both the next uncached data accessed and the data specified by an
incorrect prefetch will be equally likely to reside on any disk.

Consider a system in which all the data is stored on a single disk (i.e.D = 1). As
shown in Figure 5.3, if the prefetch is correct, then the benefit of the prefetch will beTapp.
If the prefetch is useless, then the cost of the prefetch will be(Tmiss�Tapp). Therefore, the

68 CHAPTER 5. DESIGN GOAL: LOW OVERHEAD

Time = 2*Tmiss

Time = 2*Tmiss + Tapp

Time = 3*Tmiss

Time

Case 2: If speculative execution generates incorrect prefetch (probability = (1-p))

Disk 1
Normal R R

Normal

Disk 1

R

Speculative
C

R

R = read call C = correct prefetch I = incorrect prefetch

Normal

Disk 1

R

Speculative

R

I

Case 0: Without speculative execution

Case 1: If speculative execution generates correct prefetch (probability = p)

Figure 5.3: How incorrect prefetches affect execution time when all data resides on a single disk,
assuming there is no other competition for resources. If a prefetch should be issued whenever there
is a greater probability that it will decrease than increase the execution time, then prefetches should
be issued whenever� (the probability that the prefetch will be correct) is greater than(1� Tapp

Tmiss
).

prefetch should be issued only if:

� > 1�
Tapp
Tmiss

Therefore, sinceTapp is generally much smaller thanTmiss, prefetches should only be issued
if they are almost definitely correct.

Figure 5.4 describes the cases when there are multiple disks (i.e.D>1). If a prefetch
should be issued whenever there is a greater probability that it will decrease than increase
the execution time, then prefetches should be issued whenever:

� >
Tmiss + Tapp(ÆD �D � Æ)

Tmiss(D2 �D + 1) + Tapp(D2(1� Æ) +D(2Æ � 1)� Æ)

whereÆ is the dilation factor (i.e. the relative speed of speculative execution to normal
execution, which is greater than one if a speculative execution performs work that its target

5.1. DESIGNING FOR LOW OVERHEAD 69

Time

Time = Tmiss + d*Tapp

Time = 2*Tmiss + d*Tapp

Time = 2*Tmiss + Tapp

R = read call C = correct prefetch I = incorrect prefetch

Normal R R

Disk A

C
Speculative

Disk B

Normal R R

Disk A

Speculative

Disk B

Case 3: Correct prefetch, data on different disk (probability = p(D-1)/D)

Case 4: Incorrect prefetch, data on same disk, prefetch to different disk (probability = (1-p)(D-1)/D2)

I

Normal R R

Disk A

Speculative

Disk B

I

Case 5: Incorrect prefetch, data on different disk, prefetch to same different disk (probability = (1-p)(D-1)/D2)

Figure 5.4: How incorrect prefetches effect execution time with multiple disks, assuming randomly
distributed requests and no other competition for resources. Cases 0 1, and 2 are as illustrated
in Figure 5.3, except that case 1 now occurs with probability�/D, and case 2 now occurs with
probability 1��

D2 , where� is the probability that the prefetch is correct and D is the number of disks.
The dilation factor,Æ, is the relative speed of speculative execution to normal execution. Case 6
(incorrect prefetch, data on a different disk, but prefetch to the original disk) and case 7 (incorrect
prefetch, data on a different disk, and prefetch to yet another disk) are not shown above. They both
result in the same execution time effect as case 4 above (i.e. none). Case 6 has the same probability
as case 4, but case 7 has probability(1��)(D�1)(D�2)

D2 .

normal execution will not perform). Figure 5.5 shows the correctness probability for dif-
ferent numbers of disks if theTapp terms are dropped (i.e. assumingTapp is much smaller
thanTmiss, andÆ is close to 1). Although it is likely thatÆ will be greater than one for a
user-level design, which will increase these probabilities, this indicates that just increasing
the number of disks from one to two greatly increases the tolerance for incorrect prefetches.

70 CHAPTER 5. DESIGN GOAL: LOW OVERHEAD

1 2 3 4 5 6 7 8 9 10
Number of disks

0

20

40

60

80

100
P

ro
ba

bi
lit

y
co

rr
ec

tn
es

s
th

re
sh

ho
ld

 (
%

)

Figure 5.5: Correctness probability threshhold for varying number of disks, assuming thatTapp is
much smaller thanTmiss andÆ is close to 1, such that theTapp terms can be ignored. The model
makes a number of assumptions (mentioned in the text). For example, the speculating application
is assumed to be the only application using the I/O system, and both the data requested by the next
I/O request and the data requested by an incorrect prefetch request are assumed to target each disk
with equal probability.

5.1.5 Discussion

The discussions in the previous sections conclude that, on most if not all modern operating
systems, a speculative execution design that is not allowed to require any operating system
modifications will not be able to deliver both low overhead and high performance improve-
ments. On the other hand, notice that operating system support sufficient to enable such a
design – basically, mechanisms that would allow an execution to limit the overhead it can
incur through consuming memory and I/O bandwidth – would be useful in implementing
not only the speculative execution approach, but also other optimization techniques that
attempt to exploit spare resources [15, 46] (including other approaches to I/O prefetching).
Moreover, such mechanisms may also be directly useful to end-users. As an anecdotal
example, I have found many newsgroup posts containing complaints about not being able
to run a background task without hurting the performance of a foreground task due to the
background task’s consumption of memory and/or I/O bandwidth.

5.2. LIMITING OVERHEAD IN SPECHINT 71

5.2 Limiting overhead in SpecHint

As discussed in the last section, a design could incur overhead by increasing the amount of
work performed during normal executions, stealing processing cycles from normal execu-
tions, or as a side effect of increasing contention for main memory or I/O bandwidth. This
section discusses a few elements in the SpecHint design that were shaped by the goal of
low overhead. Section 5.2.1 discusses how the decision to perform speculative execution in
an added thread resulted from the desire to ensure that the design neither adds a substantial
amount of work to normal execution, nor steals a substantial number of processing cycles
from normal execution. Section 5.2.2 discusses the limited extent to which the SpecHint
design attempts to avoid incurring overhead as a side effect of increasing contention for
memory or I/O bandwidth. Finally, Section 5.2.3 discusses an optional element in the
SpecHint implementation for reducing useless prefetches.

The evaluation results indicate that the SpecHint design has mixed success at limiting
its overhead. In particular, as shown in Table 8.7, it does not add a noticeable amount of
work to normal executions, and it does not steal a noticeable amount of processing cycles
from normal executions, but it can incur overhead as a side effect of increasing contention
for main memory or I/O bandwidth. This last is not surprising since, as discussed in the
previous section, the mechanisms provided by current operating systems do not enable
a user-level design to control the performance impact of its memory and I/O bandwidth
consumption without severely reducing its performance benefit.

5.2.1 The speculating thread

The design must provide a way to add speculative executions that will be able to make
progress while their target normal executions are blocked. The design must also provide
a way to resynchronize speculative executions with their target normal executions so that
they will not waste resources running behind their target normal execution.

As discussed in Section 5.1.1, one obvious way to add a speculative execution for a
target process would be to fork a child process for that target process, and then use the child
process to perform speculative execution. Resynchronizing the speculative execution with
its target normal execution could simply involve killing the old child process and forking
a new child process. The main problem with this approach is that, on many operating
systems (including Digital Unix 3.2, my evaluation system), forking is not preemptible
and can take a long time, such that this approach allows speculative executions to steal
noticeable amounts of processing cycles from normal executions. Therefore, the SpecHint
design, does not rely on forking.

Instead, the SpecHint design takes a different approach which will not add noticeable
overhead. In particular, it causes each target process to spawn a new thread when it begins
executing. This new thread, which I refer to as thespeculating thread, performs specu-
lative execution on behalf of the process’soriginal thread. The speculating thread resyn-
chronizes with the original thread by replacing its own execution context (e.g. program
counter, register values and stack) with a copy of the original thread’s execution context.

72 CHAPTER 5. DESIGN GOAL: LOW OVERHEAD

The resynchronization process (which does not require any system calls) is described in
detail in Section 4.2.3. The relevant point here is that spawning the speculating thread and
supporting resynchronization adds only a negligible amount of work to normal execution.
In addition, the SpecHint design prevents speculative executions from stealing a notice-
able amount of processing cycles from normal executions by: 1) ensuring that speculating
threads are assigned the lowest possible scheduling priority, and 2) preventing speculat-
ing threads from issuing any nonpreemptible system calls that could take a long time to
complete. The details of how these are accomplished are described in Section 6.3.

The decision to perform speculative execution in the same address space as normal
execution is the design decision with the greatest impact on the rest of the SpecHint design.
In particular, as discussed further in the next chapter, it greatly complicates the mechanisms
necessary to ensure that the design is safe since there are many ways in which executions
in the same address space can affect one another.

One alternative approach, which may also avoid adding noticeable overhead, would be
to modify normal execution such that it will replace a blocking read call for data that is
not in memory with an asynchronous read call for that data, and then performs speculative
execution during the interval between issuing the asynchronous read call and detecting
that the data has been fetched into memory.2 Notice, however, that such a design would
also have the property that speculative execution would be performed in the same address
space as normal execution. Therefore, this alternative would require similarly complicated
safety mechanisms. In fact, as discussed in Section 6.2.2, it may require more complicated
mechanisms. Also, it is unclear how one would extend a design based on replacing blocking
read calls with asynchronous read calls to take advantage, on a multi-processor, of spare
cycles while normal execution is not blocked on a read call.

5.2.2 Memory and I/O bandwidth consumption

As discussed in Section 5.1, to develop a user-level design that limits the overhead it could
incur through increasing memory or I/O bandwidth consumption, it would be necessary to
severely reduce the design’s performance benefit. Therefore, in order to better explore the
potential performance benefits of the speculative execution approach, the SpecHint design
does not attempt to limit the overhead it can incur as a result of increasing memory or I/O
bandwidth consumption.

The SpecHint design does include a few mechanisms for reducing this overhead. In
particular, it will sometimes block a speculative execution until it can be resynchronized
with its target normal execution. I refer to this as “aborting the current speculation”, where
a speculative execution is said to have begun a newspeculationeach time it resynchronizes
with its target normal execution. One of the reasons that the SpecHint design will abort

2Since, on most systems, an asynchronous read is much more expensive than a synchronous read if the
requested data is in memory, replacing every blocking read call (rather than just blocking read calls for data
that are not in memory) with an asynchronous read call would not be an appealing approach because it could
add a noticeable amount of work to a normal execution that issues many read calls for data that are in memory.

5.2. LIMITING OVERHEAD IN SPECHINT 73

a speculation is if it predicts that the speculative execution will not be able to initiate any
accurate prefetches using its current execution context, and therefore should be prevented
from consuming (and wasting) resources. For example, it aborts the current speculation
if a speculative execution triggers an exception which, by default, would cause the pro-
cess to terminate because this probably indicates that the speculative execution has gotten
completely confused through its use of incorrect data values. The mechanics of aborting a
speculation are described in the next chapter.

As discussed in Section 3.2.3, the SpecHint design assumes operating system support
for low overhead I/O prefetching. In particular, it assumes that the operating system sup-
portsprefetch hintcalls that allow a user-level execution to specify precisely what file data
it believes a process will access in the future. It further assumes that the operating system
will schedule prefetches based on these prefetch hints in a manner that will make good use
of the machine’s memory and I/O bandwidth, assuming the prefetch hints are accurate. As
discussed in Section 2.2.3, the purpose of such support for I/O prefetching is to enable user-
level executions to initiate prefetching without needing to worry about how (by increasing
contention for memory and I/O bandwidth) this prefetching could hurt performance. The
SpecHint design benefits from this support in exactly this manner.

5.2.3 Filtering

The SpecHint implementation includes, as an optional element, a mechanism for identify-
ing and avoiding useless prefetches. I refer to this mechanism as thefiltering mechanism.

The filtering mechanism predicts prefetch correctness probabilities using a path-based
approach, and then decides whether to issue prefetches by comparing these predictions
against a static correctness probability threshhold. As discussed in Section 5.1.4.1, a path-
based prediction approach is simply an approach that categorizes prefetch candidates based
on some feature set of the execution path that was taken to generate each prefetch candidate.
In the SpecHint implementation, the value used to categorize prefetch candidates – the
feature set identifier– is a hash of the top three values on a stack of return addresses
(explained further below) and the value of the stack pointer when the prefetch candidate
is generated. I make no claim that this is the best (or even a particularly good) feature set
identifier, either generally or for the benchmark suite I used to evaluate this implementation.
Experiments (not reported on) with some other feature set identifiers do, however, indicate
that this is a fairly good feature set identifier for my benchmark suite, such that the results
of evaluating this implementation of filtering are interesting.

The implementation of the filtering mechanism does not add any work to normal ex-
ecution. It adds two data structures to the binary: a stack of return addresses, and a data
structure which maintains two counters per unique feature set identifier that is being tracked
by the speculating thread. A feature set identifier starts being tracked the first time it is de-
tected that a prefetch with that identifier was useless. Tracking only feature set identifiers
that have been associated with a useless prefetch decreases the run-time cost of the imple-
mentation. The two counters for each feature set identifier basically indicate the number

74 CHAPTER 5. DESIGN GOAL: LOW OVERHEAD

of prefetches issued that had this identifier, and the number of those prefetches that were
subsequently detected to have been useless.

The stack of return addresses is maintained by the speculating thread, which pushes the
appropriate return address value onto the stack when it makes a procedure call, and pops a
value off the stack when it returns from a procedure call.3 Upon generating a prefetch, the
speculating thread records the prefetch’s feature set identifier in an in-memory log and, if
the identifier is being tracked, increments the associated count of prefetches issued with that
identifier. When a resynchronization is triggered in response to detecting a useless prefetch
(as discussed in Section 4.2.2), the speculating thread increments the appropriate feature set
identifier’s counter of useless prefetches. (It also decrements the count of issued prefetches
for all subsequent, tracked identifiers in the log.) Finally, before generating a prefetch with
some identifier, the speculating thread checks whether the percentage of issued prefetches
with that identifier that were detected to have been useless is below some static threshhold.
If so, it issues the prefetch; otherwise, it issues the prefetch with some low probability
in order to enable more information to be gathered about any feature set identifier. If the
speculating thread does not issue the prefetch, then it aborts the current speculation under
the conservative assumption that the current speculation has gotten confused by incorrect
data values, and therefore should avoid consuming any more machine resources.

5.3 Summary

A design for adding speculative executions could incur overhead by increasing the amount
of work performed during normal executions, stealing processing cycles from normal ex-
ecutions, or as a side effect of increasing contention for main memory or I/O bandwidth.
It is fairly straightforward to avoid incurring noticeable overhead in either of the former
two ways. On the other hand, there is no easy way to guarantee that a design will not
incur noticeable overhead in the latter way. Moreover, a design that is not allowed to re-
quire operating system modifications will need to chose between sometimes incurring high
overhead or severely reducing its performance benefit.

Since it is difficult to avoid incurring overhead as a side effect of increasing contention
for main memory or I/O bandwidth, a design might benefit from attempting to reduce the
useless I/Os that will be initiated by speculative executions. On the other hand, a design
can unnecessarily reduce its performance benefit by not issuing prefetches that would have
been correct. There are a variety of ways in which a design could attempt to predict the
probability that a prefetch will be correct. Back-of-the-envelope calculations indicate that,
to optimize predicted performance, only prefetches that are very likely to be correct should
be issued on a system with a single disk. On systems with more than one disk, however,
the ability to service multiple requests in parallel can more easily hide the cost of useless
prefetches, such that it may make sense to issue prefetches that are less likely to be correct.

3Actually, to limit the amount of extra work added by this technique, no values are added/removed from
the stack of return addresses for calls which could not lead to a read call, or for calls from procedures below
a certain size.

5.3. SUMMARY 75

The SpecHint design will not incur noticeable overhead through increasing the amount
of work performed during normal executions, or stealing processing cycles from normal
execution. However, it may incur noticeable overhead as a side effect of increasing con-
tention for memory and I/O bandwidth. The SpecHint design relies on operating system
support for low overhead I/O prefetching.

Overhead considerations shaped the single most defining design choice in the SpecHint
design. In particular, speculative execution in the SpecHint design is performed in the same
address space as normal execution (by an added speculating thread). To reduce its resource
wastage, the SpecHint design will abort the current speculation when it seems unlikely to
generate additional accurate prefetches. Finally, as an optional element, my SpecHint im-
plementation supports filtering; that is, it can predict correctness probabilities for prefetch
candidates, and use these predictions to decide whether or not to issue a prefetch.

76 CHAPTER 5. DESIGN GOAL: LOW OVERHEAD

Chapter 6

Design goal: Safety

A design for adding speculative executions will cause the behavior of a system to change in
a variety of ways. After all, to be effective, speculative execution must change the system’s
behavior; in particular, it must reduce the I/O stall time of target normal executions by
fetching data earlier than it would otherwise be fetched. However, a design should strive to
avoid causing changes that are “unsafe”, where a change is unsafe if users would consider
that change, or any consequence of that change, to be a malfunction. This is an important
design goal because, even if the design can deliver huge performance benefits, it is much
less likely to be adopted if users believe that it causes their systems to malfunction.

It may be possible to construct pathological circumstances in which any change in the
behavior of a system might cause what a user would perceive as a malfunction. Therefore,
any design will be based on some assumptions about what changes are unsafe. These
assumptions determine thesafetyof the design. If, in practice, these assumptions are rarely
if ever false for some set of applications, then the design might be considered safe for that
set of applications.

In order to evaluate the safety of a design, it is necessary to understand the assumptions
on which it relies, and the circumstances in which those assumption might prove false.
Section 6.1 discusses an assumption used throughout this chapter. Then, Section 6.2 dis-
cusses how different designs might limit the additional assumptions on which they rely
by limiting the ways in which they could possibly change system behavior. Finally, Sec-
tion 6.3 describes the set of assumptions on which the SpecHint design is based, and how
it guarantees that this set is complete.

6.1 Base safety assumption

An execution changes the behavior of the system by producingdirect output(“user output”,
e.g. what it causes to be displayed on a screen and any changes it makes to the contents
of file systems) andindirect output(any additional ways it can affect other executions, e.g.
its consumption of shared resources and any messages it sends to other executions). In
turn, a system’s behavior can be thought of as the combined output of all executions on that

77

78 CHAPTER 6. DESIGN GOAL: SAFETY

system. For the purposes of this dissertation, to avoid over-constraining the design space,
I make the following simplying assumption about what output could cause unsafe changes
in system behavior:

Base assumption.I assume that users will not consider any changes in system behav-
ior that result from changes in shared resource usage to be malfunctions, where I define
shared resource usageto be the allotment of processing resources, physical memory, I/O
bandwidth, and operating system resources (i.e. data structures maintained by the operating
system).

This assumption may not always be true in practice. For example, while most opera-
ting systems support the illusion of having an infinite amount of processing resources and
I/O bandwidth, operating systems do not support the illusion of having an infinite amount
of physical memory or operating system resources. In particular, most operating systems
limit the amount of memory and/or different operating system resources that can be allo-
cated system-wide, per user, and/or per process, and reject allocation requests for resources
whose limits have been reached. For example, most operating systems limit the total and
per-user number of processes, and will reject process creation requests while at that limit.
Moreover, many programs are implemented such that, if the operating system rejects an
allocation request by a normal execution of the program, the normal execution would be-
have in a manner that a user would probably consider a malfunction. For example, many
programs are implemented such that, if the operating system rejects a request for more
memory, execution will abort with an error message. Therefore, allowing speculative ex-
ecution to consume memory or operating system resources could result in the operating
system rejecting a subsequent allocation request by a normal execution, which could result
in an unsafe change in the behavior (i.e. the output) of that normal execution. Fortunately,
the limits on memory and operating system resources are usually high enough that they
are seldom reached in practice unless there is a “resource leak” (i.e. unless resources are
allocated and never released). Therefore, I assume that changes in shared resource usage
cannot cause malfunctions, unless they introduce a leak of memory or operating system
resources.

Notice that changes in shared resource usage will often result in changes in timing
and/or resource usage information maintained by the operating system. For example,
changing which data is in physical memory could change how long it takes for an exe-
cution to access its data, and how many I/O requests are performed on behalf of that exe-
cution. This suggests two more notable circumstances in which the above assumption may
fall short. First, the assumption may fall short for real-time applications. In particular, a
change in timing might cause a normal execution of a real-time application to miss a dead-
line that it otherwise would not have missed. A user might consider such a missed deadline
to be a malfunction. Second, it may fall short for applications that contain race conditions
that are exposed by adding speculative execution. While such race conditions could be
considered defects in the original application, users may blame speculative execution for
affecting system behavior in such a way that they become manifest.

To simplify the text in the remainder of this chapter, the above assumption is assumed

6.2. DESIGNING FOR SAFETY 79

to be true, so long as no resource leaks are introduced. Thus, for example, when I refer to
the indirect output, or the output, of an execution, I am excluding the execution’s shared
resource usage, or any effect thereof.

6.2 Designing for safety

Since an execution can only affect the system’s behavior by producing output (where out-
put includes both direct and indirect output, as defined in the previous section), a design
would provide complete safety if it could guarantee that speculative execution (and any
added normal execution) could not produce output. Therefore, one strategy for developing
a design would be to identify every action that speculative or added normal execution might
perform that could allow the speculative or added normal execution to produce output, and
then attempt to guarantee that the design prevents speculative and added normal execution
from performing any such actions.

For example, on most UNIX operating systems, an execution can producedirectoutput
only by performing specific system calls (for example, system calls that might change the
contents of a file system), modifying a mapped file, or accessing a mapped device [64].
Therefore, a design could ensure that speculative execution (or added normal execution)
could not produce direct output by guaranteeing that the execution could not perform any
system call that might produce direct output, could not modify any mapped files, and could
not access any mapped devices.

On the other hand, the set of actions that might allow an execution to produceindirect
output will depend heavily on whether the execution: 1) does not share an address space
with any other execution, 2) shares an address space but not a thread with some other ex-
ecution, or 3) shares a thread with some other execution. Sections 6.2.1, 6.2.2, and 6.2.3
begin by identifying the actions that could produce indirect output in each of these cases,
respectively. In the first case, the section proposes a set of guarantees that would be suf-
ficient for a design to ensure that such an execution could not produce (direct or indirect)
output. In the latter two cases, it may not be practical to prohibit one or more of the ac-
tions that could produce indirect output. On the other hand, it may be possible ensure that
such an action could cause unsafe changes only in unusual circumstances. Therefore, these
sections instead propose sets of guarantees that would be sufficient for a design to ensure
that such an execution could produce unsafe changes only in unusual circumstances, as
described in additional assumptions.

The rest of this section assumes a UNIX operating system (e.g. “most operating sys-
tems” means “most UNIX operating systems”).

6.2.1 Separate process

Consider a design in which a speculative execution (or added normal execution) takes place
in an address space that is not shared with any other execution, e.g. speculative execution
in a design based on forking like those sketched in Section 3.2.2. I will refer to such an

80 CHAPTER 6. DESIGN GOAL: SAFETY

execution as anadded process. Such a design can exploit existing hardware- and operating
system-enforced protection boundaries between processes to ensure that the added process
cannot produce indirect output. In particular, on a well-implemented system, these pro-
tection boundaries ensure that processes can produce indirect output only by terminating,
performing specific system calls (for example, system calls that allow the process to com-
municate with another process), modifying shared memory segments or mapped file, or
accessing mapped devices [64].

An added process could produce indirect output by terminating because, on most op-
erating systems, terminating a process causes a child termination signal (SIGCHLD) to
be delivered to the process’s current parent, and may also result in the process’s exit status
being delivered to its parent. An added process can terminate by either issuing a system call
that causes it to terminate, or receiving a signal that causes it to terminate. While a design
could prevent the former by prohibiting added processes from issuing such system calls, it
is not possible to prevent the latter on most systems. Moreover, preventing added processes
from terminating would introduce a resource leak. Therefore, a design should ensure that
added processes will eventually terminate and be reclaimed (releasing all the resources they
consume). If a design is allowed to include operating system modifications, it could ensure
that added processes can terminate and be reclaimed, without producing indirect output, by
requiring that the operating system’s process termination routine be modified. In particular,
it could require that the routine be modified such that, when an added process terminates,
its exit status is discarded and its resources reclaimed, without sending a signal to its parent.

A design could prohibit an added process from modifying any shared memory seg-
ments or mapped files by ensuring that any memory segments and files mapped into the
added process’s address space are mapped as read-only or private memory (where memory
is private if the system guarantees that any modification of that memory cannot produce
indirect output). It could prohibit an added process from accessing any mapped devices
by ensuring that devices are never mapped into the added process’s address space. (Notice
that, if an added process may be created with mapped shared memory segments, files and
devices (which is the case when forking a process on most operating systems), it would not
be sufficient to simply limit the system calls that added processes could issue to map shared
memory segments, files or devices.)

In summary, a design could guarantee that an added process (whether used for specula-
tive or added normal execution) could not produce output by ensuring that:

� The added process will terminate and have its resources reclaimed without producing
output.

� The added process is prohibited from performing any system calls that could allow it
to produce output.

� Shared memory and files are mapped into the added process’s address space only as
read-only or private memory. And,

� Devices are never mapped into the added process’s address space.

6.2. DESIGNING FOR SAFETY 81

6.2.2 Shared process, separate thread

Now, consider a design in which a speculative execution (or added normal execution) shares
an address space with another execution, but uses a separate thread, e.g. speculative execu-
tion in the SpecHint design (as discussed in Section 3.2.3). I will refer to such an execution
as anadded thread, as opposed to theoriginal thread(s). The threads in a particular design
may be either kernel threads or user threads; that is, either the operating system or a user-
level threads package may be responsible for associating each thread with its ownthread
state(program counter, register values, stack, running state, plus any other per-thread state
maintained by the particular operating system or user-level threads package). Threads in
the same address space shareprocess state(process identifier, address space, open file in-
formation, and any other per-process state maintained by the particular operating system).
A thread can produce indirect output that may affect the output of another process (or of an
original thread) in all the ways described in the previous section. In addition, a thread can
produce indirect output that may affect the output of an original thread by modifying their
shared process state, or the thread state of that original thread. On most operating systems,
a thread could do this only by performing the specific system calls that could modify its
process state or the thread state of another thread in the same process, modifying arbitrary
memory values, triggering an exception, or receiving asynchronous signals [64].

It may not be practical for a design to guarantee that an added thread could not produce
indirect output. For example, if the added thread is used to perform speculative execution,
preventing the added thread from modifying any memory values would prevent speculative
execution from retaining the results of computations performed while running ahead of its
target normal execution. This would greatly increase the number of incorrect values used
during speculative execution and, as demonstrated in Section 8.2.1, severely diminish the
set of applications for which the design could provide benefit. However, it may be possible
for a design to restrict the ways in which an added thread could produce indirect output in
such a manner that any indirect output the added thread produced would change the output
of an original thread only in unusual circumstances.

For example, most modern operating systems divide each process’s address space into
equal-sized units refered to as pages, and allow a process (executing at user-level) to access
only pages that contain the process’s code, global data, stack(s), or heap(s). If a process
attempts to access any other page, it will trigger an exception, which will usually cause
the operating system to terminate the process immediately. Therefore, I claim that the
following assumption will be true for a broad range of applications:

Assumption 1.Original normal executions will access only pages that contain original
program code, original global data, their stack(s), or their heap(s).

Based on this assumption, a design can guarantee that added threads will not, by modi-
fying memory values, change the output of original threads by ensuring that added threads
will never modify values on such pages, which I will refer to as “pages mapped for original
execution”.

Notice, however, that an added thread can produce indirect output by mapping other
pages (that it could then modify). In particular, it can interfere with the growth of mem-

82 CHAPTER 6. DESIGN GOAL: SAFETY

ory regions that the operating system requires to be contiguous, where, on most operating
systems, the only such memory regions are the primary thread’s stack and thebrk heap
(the heap whose bound is determined by the address in thebrk pointer maintained by the
operating system). It can also introduce a resource leak by progressively mapping an in-
creasing number of pages. Finally, it can change which pages the operating system maps
in response to subsequent mapping requests by original threads. This last case, however,
may not be an issue. On most systems, if an execution demands particular pages (as it can
do viammap or shmat system calls, for mapping files, devices or memory, and attaching
memory segments, respectively), the operating system will grant those pages even if they
were already mapped (unmapping whatever used to be in those pages). Therefore, an added
thread’s page mappings could change only which pages the operating system will map in
response to mapping requests that claimed not to require particular pages. Thus, I claim
that the following assumption will be true for a broad range of applications:

Assumption 2.Unsafe changes will not result from changing which pages an operating
system will map in response to mapping requests from original normal executions (that do
not specify particular pages).

Based on this assumption, a design can guarantee that added threads will not, by map-
ping pages, cause unsafe changes in the output of original threads by ensuring that such
mappings could not cause a resource allocation request by an original thread to fail (either
by causing a resource limit to be met, or by interfering with the growth of the primary stack
or brk heap).

Next, consider how allowing an added thread to trigger an exception could produce
indirect output. Whenever a thread triggers an exception, the operating system will gen-
erate a signal for that thread of a particular type (depending on how the thread triggered
the exception). I will refer to the types of signals that could be generated by triggering an
exception as theexception signal types. What happens after a signal is generated depends
on the action specified for that type of signal, and whether that type of signal is “blocked”.
On most operating systems, the action specified for each exception signal type can be one
of the following: 1) ignore the signal, 2) terminate the process (the default), or 3) execute
the appropriatesignal handler(the function previously designated as the function to ex-
ecute upon receiving a signal of that type). If the action specified for that type of signal
is to ignore the signal, then the operating system will discard the signal. Otherwise, the
operating system will deliver the signal as soon as that type of signal is not blocked (e.g.
immediately, if that type of signal is not blocked when the signal is generated); that is,
depending on the action specified, the operating system will either terminate the process,
or cause the triggering thread to execute the designated signal handler. Therefore, by trig-
gering an exception, an added thread could produce indirect output by causing the process
to be terminated, or by executing a signal handler that allows it to produce indirect output.

Notice that, unless it is prevented from doing so, it is not only possible but also quite
likely that an added thread used for speculative execution will trigger exceptions because
such a thread will sometimes uses incorrect data values (as discussed in Section 3.1.2). In
particular, it is not unlikely that an added thread used for speculative execution will, as a

6.2. DESIGNING FOR SAFETY 83

result of using incorrect data values, trigger an arithmetic exception, or calculate memory
addresses incorrectly such that it triggers an exception by attempting to access an invalid
address or memory that is inaccessible.

One way for a design to guarantee that an added thread could not produce indirect
output by triggering an exception would be for it to guarantee that added threads could
not trigger exceptions (i.e. by statically and/or dynamically ensuring the validity of all
operations that could potentially trigger an exception). However, this may not be practical
when considering all the ways a thread could trigger an exception. An alternative would
be for a design to guarantee that, for all the types of signals that it allows added threads to
generate by triggering exceptions, the specified action is neither to terminate the process,
nor to execute a signal handler that might allow the thread to produce indirect output. This
is complicated by the fact that, on most operating systems, the action specified for each type
of signal is shared by all threads in a process, so changing the actions specified for an added
thread could produce indirect output by changing the actions specified for original threads.
If a design is allowed to include operating system modifications, then it could require that
the operating system be modified to allow added threads to have different actions specified.
Otherwise, it could approximate this effect at user-level by specifying signal handlers that
would cause different code to be executed depending on whether they were being executed
by an added or original thread. For example, if the specified action for original threads
would be to execute a particular function, then a design could specify a signal handler that
would cause any original thread to jump to the entry address of that function (while causing
any added thread to perform some other computation).

However, there is one case in which such a user-level design may not be able to guaran-
tee the same effect. In particular, an operating system requires some amount of stack space
to deliver a signal for which the specified action is to execute a signal handler, even if the
signal handler itself requires no stack space to execute. If the operating system attempts to
deliver such a signal when the stack that would be used to handle the signal has insufficient
space, then an exception will be triggered. Therefore, simply by changing the specified
action for some type of signal from ignoring the signal or terminating the process to ex-
ecuting some signal handler, a design could cause an extra signal to be generated for an
original thread. If the specified action for this extra signal is anything other than ignoring
the signal, then the process will be terminated. Assume that a design causes the specified
action for this signal to be executing a signal handler. If the specified action would have
been to ignore the signal, the design could cause the process to terminate prematurely. No-
tice, however, that, if a signal generated by triggering an exception is ignored, most systems
will simply re-execute the instruction that triggered the exception, which would cause the
exception to be re-triggered repeatedly. Therefore, I claim that the following assumption
will be true for a broad range of applications:

Assumption 3. The following will not both occur: 1) an original normal execution
receives an exception signal while it has insufficient stack space to handle a signal, and 2)
it would have specified that the action for that exception signal type be to ignore the signal.

On the other hand, if the specified action would have been to terminate the process, then

84 CHAPTER 6. DESIGN GOAL: SAFETY

the design could cause the process to terminate with a different exit status. However, this
could only cause an unsafe change if the process’s parent actually examines its exit status,
and is affected by exactly which exception signal caused its child to terminate. Therefore,
I claim that the following assumption will be true for a broad range of applications:

Assumption 4. The following will not both occur: 1) an original normal execution
receives an exception signal while it has insufficient stack space to handle a signal, and 2)
a change in its exit status will cause an unsafe change in its parent’s output.

Based on these assumptions, a design can guarantee that added threads will not, by
triggering exceptions, cause unsafe changes in the output of original threads by ensuring
that it will handle exception signals in a manner that does not produce any output, and
does not change the effect of exception signals generated for original threads except in the
boundary cases described above.

Finally, consider how allowing an added thread to receive asynchronous signals could
produce indirect output. Most operating systems will deliver an asynchronous signal of
a particular type to any thread that is not blocking signals of that type. (Most modern
operating systems support per-thread signal masks, where a process/thread’ssignal mask
specifies which types of signals are blocked for that process/thread.) Therefore, if an added
thread is not blocking some type of signal, then it could produce indirect output by receiving
an asynchronous signal of that type, that would otherwise have been delivered to another
thread. A design could guarantee that it will not allow an added thread to, by receiving
an asynchronous signal, produce indirect output by guaranteeing that added threads always
block all types of signals. However, consider a design that allows added threads to generate
exceptions. If the design is allowed to include operating system modifications, then it could
guarantee that added threads could not, by receiving asynchronous signals, produce indirect
output by requiring that the operating system be modified such that it will never deliver
asynchronous signals to added threads. On the other hand, if the design is not allowed
to include operating system modifications, then it would be able to guarantee that added
threads could not produce indirect output only by guaranteeing that, for all exception signal
types associated with exceptions that added threads could trigger, the action specified is
either to ignore the signal or to execute a signal handler that would not allow added threads
to produce indirect output. The former would not be a good design decision for the reasons
discussed in the previous paragraph, and the latter requires that added threads not block the
appropriate exception signal types whenever they might trigger an exception. I will refer
to signals of a type that could be generated by triggering an exception asexception signals.
Most operating systems will generate an exception signal as an asynchronous signal only
in response to an explicit signal generation request (e.g. akill system call). In addition,
most operating systems supply other signal types that are expressly for use in programs that
wish to communicate by explicitly generating signals. Therefore, I claim that the following
assumption will be true for a broad range of applications:

Assumption 5.Exception signals are not used as asynchronous signals.
Based on this assumption, a design can guarantee that added threads will not, by re-

ceiving asynchronous signals, cause unsafe changes in the output of original threads by

6.2. DESIGNING FOR SAFETY 85

ensuring that they always block all but exception signals.
In summary, it would be very difficult for the design to guarantee that an added thread

could not possibly produce indirect output. However, it is possible to limit the ways in
which it could produce indirect output. In particular, based on the assumptions detailed in
this section, I propose that a design could guarantee that an added thread (whether used for
speculative or added normal execution) would cause no unsafe changes for a broad range
of applications by ensuring that:

� The added thread can map only pages not mapped for original execution.
� Any pages mapped by added threads are unmapped before their being mapped causes

the operating system to reject a mapping request by an original thread (either by
causing a resource limit to be met, or by interfering with the growth of the primary
stack orbrk heap).

� The added thread is prohibited from mapping shared memory segments, files, or
devices into its address space.

� The added thread is prohibited from performing any system call that could allow
it to produce output (where the above is assumed to be sufficient for ensuring that
mapping pages cannot produce output).

� The added thread does not modify any pages mapped for original execution.
� Either the added thread cannot trigger exceptions, or any exceptions that could be

triggered by the added thread cannot change its output. And,
� The added thread blocks all signals except exception signals.

6.2.3 Shared thread

Finally, consider a design in which a speculative execution or added normal execution
shares a thread with another execution. Such an execution could produce indirect output in
the ways that a separate thread could produce indirect output (as described in the previous
section). In addition, it could produce indirect output by changing what the thread’s state
would be during the other execution. On most operating systems, a thread can modify its
thread state only by triggering an exception, receiving a signal, performing a system call
that could modify its own thread state, or modifying its program counter, register values or
stack [64].

A design in which speculative execution shares a thread with another execution can be
converted into one in which speculative execution shares an address space but not a thread
with another execution. This can be achieved by treating speculative execution and the
execution with which it shares a thread as two virtual threads multiplexed onto that actual
thread, e.g. by logically adding another layer of thread support.

On the other hand, to add work to normal execution, it may be more natural for a design
to simply insert short sequences of instructions into the sequence of instructions executed
during original normal execution. I will refer to these inserted sequences asside trips. A
design could guarantee that added normal execution will not produce indirect output as the
result of either triggering an exception or receiving a signal, by guaranteeing that side trips

86 CHAPTER 6. DESIGN GOAL: SAFETY

could not trigger exceptions and that all signals will be blocked during side trips. Also, a
design could guarantee that added normal execution will not produce indirect output as the
result of changing register or stack values by ensuring that, upon ending each side trip, the
only register and stack values the side trip changed weredead values(values that would
not have been used before they were changed anyhow).

Therefore, based on the assumptions in the previous section, I propose that a design
could guarantee that added normal execution, sharing a thread with its original normal
execution, would cause no unsafe changes for a broad range of applications by ensuring
that: 1) any pages mapped during added normal execution are unmapped before their be-
ing mapped causes the operating system to reject a mapping request by original normal
execution, and 2) added normal execution consists of side trips, where each side trip:

� Begins by changing the thread’s signal mask to block all signals and end by changing
the thread’s signal mask back to its prior setting.

� Can map only pages not mapped for original execution.
� Except for the above, cannot perform any system call which might produce output.
� Cannot map shared memory segments, files, or devices into the address space.
� Cannot modify any pages mapped for original execution, except memory that con-

tains the thread’s stack.
� Cannot trigger any exceptions.
� Must complete. And,
� Upon completion, must leave the thread state (including the thread’s stack and signal

mask) as it was when the side trip began, except that it need not restore dead values,
and that the program counter should now indicate what would have been the next
instruction had the side trip not occurred.

6.3 Safety of SpecHint

In the previous section, I proposed sets of guarantees that I claim a design could provide
to ensure that it would cause no unsafe changes for a broad range of applications. In this
section, I instead focus on the issues that arise in trying to provide such guarantees in the
context of a particular design, the SpecHint design.

The SpecHint design is based on binary modification. It specifies the behavior of a
binary modification tool and the behavior of a set of support routines that the binary mod-
ification tool requires in addition to the application binary. Throughout this section, when
I refer to “what the SpecHint design guarantees”, I mean what an implementation of the
SpecHint design would guarantee if it met the specification and introduced no safety loop-
holes as a result of how it implemented the design. The SpecHint implementation refers
to my implementation of this design (tool and support routines), while theSpecHint tool
refers to just my binary modification tool.

The SpecHint design is targeted at single-threaded applications. It is structured such
that speculative execution will be performed in the same address space as its target normal

6.3. SAFETY OF SPECHINT 87

execution, but by a separate, added thread. I refer to this thread as thespeculating thread.
Added normal execution, on the other hand, will share a thread with original normal ex-
ecution. I will refer to this thread as theoriginal thread. The support routines specified
by the design will be included in every transformed binary. These routines provide func-
tionality essential to the design, and not specific to any application. They can be divided
into support routines for speculating threads, support routines for original threads, and the
exception handling support routine(for both threads).

The design limits what code speculating threads could possibly execute. In particular,
the design guarantees that speculating threads can execute only support routines for spec-
ulating threads, the exception handling support routine, a few system calls which will pro-
duce no output (which will be the case if they behave as commonly expected), and a specific
subset of the code in each transformed application binary that I refer to asshadow code.
While the support routines are common to all applications, shadow code is the application-
specific code that speculating threads execute to run ahead of their original threads. The
design specifies what a binary modification tool should accomplish to generate shadow
code automatically in a manner that, combined with the design’s specifications for the sup-
port routines, guarantees that speculating threads and added normal execution would cause
no unsafe changes for a broad range of applications.

The SpecHint design is based on the assumptions detailed in Section 6.2.2; that is,
throughout this section, whenever I refer to “indirect output”, I am excluding indirect output
that, as discussed in that section, would not cause unsafe changes for a broad range of
applications. Also, whenever I refer to executing some code in the binary, I am including
performing any system calls issued while executing that code.

This section begins by describing what shadow code is, key properties of shadow code,
the specifications in the SpecHint design that guarantee those properties, relevant imple-
mentation choices in the SpecHint implementation, and tradeoffs in basing a design on
shadow code. It then describes the specified behavior of the support routines, when those
routines should be called, and how these specifications combine to establish the safety of
the design.

6.3.1 Shadow code

Shadow code is the application-specific code that speculating threads execute to run ahead
of their original threads. In particular, for a given application, it is an extensively modified
copy of the code from the original application binary, that the SpecHint design specifies
should be generated by the binary modification tool and included in the application’s trans-
formed binary.

I use the termshadow memoryto refer to the memory allocated to hold a speculating
thread’s stack, plus any memory allocated via one of theshadow allocation support routines
(a subset of the support routines for speculating threads, described in Section 6.3.2.2). The
SpecHint design specifies how to guarantee that, while executing shadow code, speculating
threads:

88 CHAPTER 6. DESIGN GOAL: SAFETY

1. Will not be able to modify any memory other than shadow memory.

2. Will not be able to issue any system calls other than those which are guaranteed to
return to user-level code, and can change at most the values in their registers and the
contents of one or more buffers entirely contained within shadow memory.

3. Will always block all but exception signals, and will always have enough space in
the stack(s) that would be used for signal handling to handle any signals they might
receive. And,

4. Will be able to “escape” from shadow code to only the exception handling support
routine, or one of the support routines for speculating threads.

Notice that, if shadow memory does not overlap any pages allocated for original execu-
tion, and if the actions specified for exception signals will not allow speculating threads to
produce output, then the first three guarantees are sufficient to ensure that, while executing
shadow code, speculating threads would not produce output (for the reasons discussed in
Section 6.2.2). The last makes it possible for the SpecHint design to restrict what code
speculating threads could execute (and therefore what unsafe actions they could perform)
simply by specifying the behavior of those support routines appropriately.

To generate shadow code, the SpecHint design specifies that the binary modification
tool make a copy of the code section in the original application binary, and then modify
this copy in a certain manner. In particular, the SpecHint design specifies several types of
checksandcheck support routines. A check is a sequence of instructions that may include
a call to a check support routine, the check support routines are a subset of the support
routines for speculating threads, and each check – in combination with whatever check
support routine it calls – enforces a particular constraint. The design also specifies when a
speculating thread must perform these checks while executing shadow code.

Typically, each check is associated with some instruction, which I refer to as thechecked
instruction, and is responsible for guaranteeing that this instruction is only executed if
doing so would not violate some specification. If executing the instruction would violate
the specification, then the check (or the check support routine it calls) would ensure that
it is not executed by aborting the current speculation; that is, it will cause the speculating
thread to resynchronize by calling a particular support routine for speculating threads, the
resynchronization support routine. The SpecHint design specifies that this routine allow the
speculating thread to leave the routine only by jumping to particular addresses in shadow
code (and only after updating its state in a manner described in the next chapter); that is,
from the perspective of any function that calls this routine, the routine never returns.

Sections 6.3.1.1, 6.3.1.2, 6.3.1.3, and 6.3.1.4, begin by describing the specifications for
the check(s) and check support routine(s), and any other relevant specifications, with which
the SpecHint design provides each of the above guarantees, respectively. Each section
ends by describing relevant implementation decisions in the SpecHint implementation. To
simplify the text in this section, although the copy of the code is not technically “shadow

6.3. SAFETY OF SPECHINT 89

code” until all the necessary modifications have been made, I will refer to it as shadow code
throughout this section.

6.3.1.1 Software copy-on-write

This section discusses how the design guarantees that, while executing shadow code, spec-
ulating threads will modify only shadow memory (the memory allocated to hold a specu-
lating thread’s stack, plus any memory allocated via one of the shadow allocation support
routines). Section 6.3.2.2 will discuss how the design ensures that shadow memory does
not overlap pages allocated for original execution, such that this guarantee is sufficient to
ensure that, while executing shadow code, speculating threads cannot change the output of
normal execution by modifying memory values that are subsequently used during original
normal execution. The section begins by describing a well-known technique that could
be leveraged to provide this guarantee. It then describes the mechanism by which most
systems support this technique, and why that mechanism is inappropriate for the SpecHint
design. Next, it discusses the alternative mechanism specified by the SpecHint design.
Finally, it discusses a few decisions in the SpecHint implementation.

Copy-on-writeis a technique for allowing two (or more) entities to share some data,
while ensuring that, if either of them modifies the data, the data seen by the other entity
will not be changed. The data may be divided into one or more units, and each unit is
initially designated a copy-on-write unit. Copy-on-write involves detecting the first attempt
to modify a copy-on-write unit by either entity and, at that time, making a copy of that unit,
and ensuring that each of the entities will subsequently access its own (no longer copy-on-
write) version of that unit.

The technique is called copy-on-write because a copy is made only upon the first at-
tempt to modify a copy-on-write unit. Notice that an alternative approach would be to copy
all the data upfront, rather than allowing the data to be shared. This alternative approach
has the advantages of not requiring a mechanism for detecting the first attempt to modify
a copy-on-write unit, and not incurring any runtime cost associated with detecting these
modification attempts. However, copy-on-write is often more efficient for two reasons.
First, copying all the data upfront could take a considerable amount of time. Second, if
neither entity attempts to modify some copy-on-write unit, then that unit would never need
to be copied, saving both time and space.

Notice that copy-on-write could be leveraged to provide the desired guarantee that,
while executing shadow code, speculating threads will be able to modify only shadow
memory. In particular, for each execution of a transformed application binary, the shared
data would benon-shadow memory(i.e. all memory that is not shadow memory), and
the entities would be the original thread and the speculating thread while it is executing
shadow code. Non-shadow memory would be divided into one or more units, all initially
designated copy-on-write. Then, assuming a suitable copy-on-write mechanism, a design
could guarantee that the speculating thread would be able to modify only shadow memory
simply by ensuring that, regardless of which thread initiates the first attempt to modify a
copy-on-write unit, the original thread would always retain the original copy of the unit.

90 CHAPTER 6. DESIGN GOAL: SAFETY

Most systems provide a copy-on-write mechanism that I will refer to asstandard copy-
on-write. In particular, most systems divide each process’s address space into equal-sized
units called pages, and support copy-on-write between processes at the granularity of a
page. On most systems, the first attempt to modify a copy-on-write page is detected in
hardware, in the process of address translation. Upon detecting that a copy-on-write page
needs to be copied, the hardware generates an exception, which causes the operating system
to execute. The operating system manages the actual copying of copy-on-write pages and
the updating of address spaces to ensure that each process will subsequently access its own
(no longer copy-on-write) page.

Since detecting when a page should be copied is performed in hardware, the the copy-
on-write provided by most systems is very efficient. Unfortunately, it is inappropriate for
the SpecHint design because operating systems support copy-on-write only between pro-
cesses, not between threads in the same process.

The SpecHint design supports a variant of “ordinary” copy-on-write which I refer to as
selective copy-on-write. Recall that, as described above, copy-on-write involves making a
copy upon the first attempt to modify some data shared by multiple entities, regardless of
which entity attempts to modify the data. Selective copy-on-write is functionally identical
to copy-on-write except that it makes a copy only upon the first attempt to modify the
shared data by an entity that is a member of a pre-specified subset of the entities sharing
the data. That is, the shared data can be modified by any entity not in that subset without
causing the data to be copied.

The SpecHint design specifies a mechanism, which I refer to assoftware copy-on-write,
for implementing, entirely at user-level, selective copy-on-write between threads in the
same address space. The SpecHint design guarantees that speculating threads can modify
only shadow memory while executing shadow code by specifying the behavior of two types
of checks (collectively refered to ascopy-on-write checks), the behavior of the check sup-
port routines they call (thestore check support routineand theload check support routine),
and what the binary modification tool must ensure in modifying shadow code to include
copy-on-write checks.

In particular, the design specifies that a process’s address space be logically divided into
regions, where each region is part of either shadow memory or non-shadow memory. The
design specifies that the store check support routine behave as follows:

� It should expect an address as its argument.
� If the argument refers to a shadow memory region, then it should return the argument.
� If the argument refers to a non-shadow memory region that has a copy, then it should

return the appropriate address in that copy. And,
� If the argument refers to a non-shadow memory region that does not have a copy,

then it should either 1) copy the region into some memory that is shadow memory
but not holding the speculating thread’s stack (possibly first allocating this memory
by calling one of the shadow allocation support routines for speculating threads),
update whatever data structure is maintained to map between non-shadow memory
regions and their copies, and return the appropriate address in the newly created copy,

6.3. SAFETY OF SPECHINT 91

or 2) abort the current speculation.

The design specifies that the load check support routine behave as follows:

� It should expect an address as its argument.
� If the argument refers to a shadow memory region, or a non-shadow memory region

that does not have a copy, then it should return the argument. And,
� If the argument refers to a non-shadow memory region that has a copy, then it should

return the appropriate address in that copy.

(The design further specifies that the behavior of both of these support routines be restricted
as described in Section 6.3.2.3.) In addition, the design specifies that the binary modifica-
tion tool modify shadow code to include sufficient copy-on-write checks. In particular, the
design specifies that the binary modification tool modify shadow code such that a thread
which executes shadow code will call (with the correct return address) the store/load check
support routine before every store/load instruction that might otherwise store/load to non-
shadow memory, specifying what would be the target address of the store/load instruction
as the argument to the routine, and will then store to/load from the address specified as
the routine’s return value instead of the address it specified as the argument to the call.
Notice that a binary modification tool could meet this specification by modifying shadow
code such that a thread which executes shadow code will perform a copy-on-write check
before every store and load instruction in shadow code. However, it is possible for a tool to
add much less work to speculative execution. In particular, if a tool guarantees that some
subset of store and load instructions in shadow code could not possibly store or load to
non-shadow memory, then the tool would not need to ensure that a thread would execute a
copy-on-write check before those instructions.

Through this specification, the SpecHint design guarantees that, while a speculating
thread is executing shadow code, whenever it would otherwise store to a non-shadow mem-
ory region that has no copy, it will instead make a copy of that region and redirect the store
to the copy (or it will abort the current speculation). Whenever it would otherwise store
to/load from a copied non-shadow memory region, it will instead redirect the store/load to
the copy. And, in all other cases, the store or load would proceed without being redirected.
This is illustrated in Figure 6.1.

Notice that the design could provide the desired safety guarantee (that, while executing
shadow code, speculating threads modify only shadow memory) without adding any calls
to the load check support routine. However, in such a design, speculating threads may
often issue load instructions that, by loading from non-shadow memory regions rather than
copies of those non-shadow shadow regions, obtain data values that are “stale” with respect
to speculative execution. Therefore, not adding calls to the load check support routine may
unnecessarily introduce incorrect data values into speculative execution, which may hurt
the design’s ability to deliver performance benefit.

The SpecHint design makes one further specification to avoid unnecessarily introducing
incorrect data values into speculative execution as a side effect of implementing copy-on-
write between threads in the same address space rather than different processes. In particu-

92 CHAPTER 6. DESIGN GOAL: SAFETY

2:load from region1

memory memory

1a: copy region1

1b: redirect store

2: redirect load

Speculating
 thread

3: load

1:store to region1

3:load from region2

ShadowNon-shadow

Figure 6.1: Illustration of how software copy-on-write works. (1) The first time the speculating
thread attempts to store to an uncopied non-shadow memory region, the region is copied and the
store is redirected to the copy. (2) Loads from (and stores) to copied regions are redirected to the
copy, while (3) loads from uncopied regions are allowed to proceed without redirection.

lar, notice that, after a copy-on-write page shared by two processes is copied, each process
can map its own copy of the page at the address where it had original mapped the shared
page. However, after a copy-on-write region shared by two threads in the same process is
copied, the copy of the region must reside at a different address than the original region.
This could unnecessarily introduce incorrect data values into speculative execution as il-
lustrated in Figure 6.2. In this example,buf is an array which happens to cross a region
boundary; its first element is in regionA at addressn, and its second element is in region
B at addressn + 1. Consider what could happen when a speculating thread executes code
that, if executed by an original thread, would modify the values of each of these elements
in turn. The speculating thread would pass the addressn to the store check support routine,
which would returnp, the address of the copy of the first element. If the speculating thread
modifies its value forbuf to bep (such that any future attempts to access the first element
of buf would not need to be redirected) then it will believe, incorrectly, that the second
element is at addressp+1. This could, for example, cause it to overwrite unrelated shadow
memory (i.e. ifp + 1 is in an unrelated shadow memory region). (Notice that it would
not allow the speculating thread to modify non-shadow memory.) Fortunately, the design
can avoid unnecessarily introducing incorrect data values into speculative execution in this
fashion by guaranteeing that a pointer to some data in a non-shadow memory region will
never be changed to point instead to the copy of that data (in a shadow memory region).
Since all addresses in copies of non-shadow memory regions are initially obtained by call-
ing the store or load check support routine, the SpecHint design provides this guarantee by
specifying that the way in which shadow code is modified ensure that speculating threads
can use an address returned by a call to the store or load check support routine to update a
value in shadow memory only indirectly (i.e. by accessing the data at that address).

The idea of enforcing memory protection in software instead of hardware by adding
checks before load and store instructions is not new. Simpler checks have been used to im-
plement software fault isolation [67]. Notice that one potential advantage of implementing

6.3. SAFETY OF SPECHINT 93

shadow
region

A

region
Shadow

A’

buf[0] = 0;

buf[1] = 0;

...

...

Address spaceOriginal code

Non-

?

...... ...nn
+
1

p
p
+
1

buf

Non-
shadow
region

B

Region

Figure 6.2: An example of how updating a pointer to an object in non-shadow memory to point
instead to the copy of the object in shadow memory could cause incorrect data values to be intro-
duced unnecessarily into speculative execution. In particular, when speculative execution executes
the shadow code version of this original code, it will execute a store check before updating each ele-
ment ofbuf . Upon executing the first store check, it will learn that the copy ofbuf is at addressp.
If it updates its value forbuf to bep rather thann, however, then it will subsequently miscalculate
the address of the second element inbuf .

copy-on-write in software rather than using standard copy-on-write is that, while, on most
systems, the granularity of standard copy-on-write is fixed to be the system’s page size,
a software implementation of copy-on-write could choose any region size and could even
choose to vary region sizes. On the other hand, software implementations will tend to incur
more overhead. For example, the main disadvantage of including software copy-on-write
in the SpecHint design is that performing copy-on-write checks will add a large amount of
work to speculative execution, which may hurt the design’s ability to deliver performance
benefit as discussed in Section 6.2.

Notice that basing a speculative execution design on selective copy-on-write rather than
ordinary copy-on-write could affect the performance of the design in two ways. First, it
may reduce the overhead of the design. In particular, if a design uses ordinary copy-on-
write, the first execution that attempts to modify a copy-on-write unit would suffer the
cost of copying the unit. On the other hand, a design that uses selective copy-on-write
could guarantee that normal execution could modify copy-on-write units without suffering
the cost of copying those units by not including normal execution in the subset of entities
that can, by modifying copy-on-write units, cause those units to be copied. This may not
be a noticeable benefit, however, since the cost of copying a copy-on-write unit may be
negligible. For example, on my evaluation machine, modifying a copy-on-write page takes
only around 165 microseconds.

Second, consider how selective copy-on-write affects speculative execution’seffective
address space(the subset of its address space that it can access which, depending on the
design, may be its entire address space but, for the SpecHint design, is shadow memory
plus any uncopied non-shadow memory regions while the speculating thread is execut-
ing shadow code). Notice that, until speculative execution modifies a given copy-on-write

94 CHAPTER 6. DESIGN GOAL: SAFETY

unit, any changes that normal execution makes to that unit will automatically be included
in speculative execution’s effective address space. Therefore, basing a design on selective
rather than ordinary copy-on-write will sometimes enable speculative execution to leverage
runtime values determined during normal execution without resynchronizing with normal
execution, which may be an advantage since resynchronizing with normal execution will
incur some cost. On the other hand, basing a design on selective copy-on-write may cause
speculative execution to see inconsistent memory values (where, by “inconsistent”, I mean
that speculative execution’s effective address space may include a value that normal exe-
cution set at some particular time without including all values that normal execution set
before that time). In particular, if speculative execution modifies some copy-on-write unit,
and then normal execution modifies first that unit and then some other unit that has not
yet been copied, then speculative execution’s effective address space will include the latter
update but not the former update. It is unclear whether the combination of these two effects
would improve, degrade, or have no noticeable effect on the performance of a design.

The SpecHint implementation

The SpecHint implementation satisfies the specifications in this section. The SpecHint tool
uses simple mechanisms to reduce the amount of work added to speculative execution for
the purpose of supporting software copy-on-write.

As background, on the architecture targetted by my implementation (the Alpha archi-
tecture [50]), a store instruction designates the value to store and the address at which to
store it, where the address is the sum of a register value and a constant offset. A load in-
struction designates the address from which to load a value, where the address is specified
as for a store instruction, and the register in which to place that value. I will refer to the
register whose value is used to determine the address specified by some load or store in-
struction as the “base register” and will say that the instruction is a load or store “off” this
base register (e.g. “loads off the stack pointer” are load instructions whose base register
is the stack pointer). The architecture limits the range of the constant offset that can be
specified to�32 KB.

The SpecHint tool modifies shadow code such that the speculating thread will perform
a copy-on-write check before every load and store instruction in shadow code, except loads
and stores off the stack pointer or global pointer. (The global pointer is an Alpha-specific
register commonly used as the base register for accessing global data.) The tool guaran-
tees that copy-on-write checks need not be performed before loads and stores off the stack
pointer by ensuring that those loads and stores allow speculating threads to access only
memory allocated for their stack. In particular, the tool guarantees that, while speculating
threads are executing shadow code, their stack pointer always contains an address that is in
the memory allocated for their stack, but not in the top or bottom 32 KB of that memory.
This is sufficient because, as discussed in the previous paragraph, loads and stores can ac-
cess only memory within 32 KB of the address in their base register. This is implemented
in the simplest possible manner, i.e. by adding a check before every instruction that could
change the stack pointer (as described in Section 6.3.1.3). Eliminating the need for copy-

6.3. SAFETY OF SPECHINT 95

Benchmark % of instructions which were
Load/stores off Other Stack pointer

Stack pointer Global pointer loads/stores changes
Agrep 2 0 29 0
Gnuld 8 1 17 2
XDataSlice 17 0 20 2
Postgres 80% 13 3 12 4
Postgres 20% 13 2 11 4
Sphinx 5 1 16 1

Table 6.1: To estimate the benefit of not adding copy-on-write checks for loads and stores off the
stack pointer (and global pointer), and the amount of work that the remaining copy-on-write checks
will add to speculative execution, I used pixie [51] to measure dynamic instruction counts while
executing my benchmarks using original application binaries. (The benchmarks are described in
Section 7.3.) The second and third column estimate how much more frequently copy-on-write
checks would be performed if they needed to be performed before loads and stores off the stack
pointer and global pointer, respectively. The fourth column estimate how frequently copy-on-write
checks would still need to be performed. The last column shows how frequently stack pointer checks
would be performed.
.

on-write checks before loads and stores off the global pointer is a small and undescribed
optimization. Table 6.1 shows, for executions of unmodified application binaries, percent-
ages of instructions executed which are loads or stores off the stack pointer, loads or stores
off the global pointer, other loads or stores, and instructions that change the stack pointer.
These figures indicate that eliminating copy-on-write checks before loads and stores off the
stack pointer can substantially decrease the number of copy-on-write checks performed,
even when accounting for the addition of stack pointer checks (which are simpler and re-
quired for another reason anyhow, as discussed in Section 6.3.1.3). However, the remaining
copy-on-write checks will probably still add a lot of work to speculative execution.

6.3.1.2 System calls

The SpecHint design restricts the system calls that speculating threads can issue while
executing shadow code in the following two ways. First, it specifies that the binary modi-
fication tool remove from shadow code alltrap instructions(instructions that could initiate
a system call) that could be used to issue a system call that could fail to return to user-level
code (e.g. theexit system call). Second, it specifies that the tool remove from shadow code
all trap instructions that could change any state (internal or external to the process) other
than the calling thread’s register values, except if: 1) the trap instruction could be used only
to issue a system call that would, in addition, change at most the contents of one or more
input buffers specified in arguments to the call, and 2) the binary modification tool ensures
that all buffers so specified are entirely contained within shadow memory. Section 6.3.2.2

96 CHAPTER 6. DESIGN GOAL: SAFETY

will discuss how the design ensures that shadow memory does not overlap pages mapped
for original execution, such that this specification is sufficient to guarantee that speculating
threads, while executing shadow code, cannot produce direct or indirect output by issuing
system calls. It also guarantees that, while executing shadow code, speculating threads
cannot (for example) map devices, change their signal mask, change the actions specified
for handling signals, or issue system calls that might map pages.

Notice that the combination of software copy-on-write, and preventing system calls that
might map pages, guarantees that speculating threads cannot in any way claim an additional
piece of the address space while executing shadow code. In particular, a speculating thread
could call the shadow code version of some user-level memory allocation routine (e.g.
malloc), but software copy-on-write will prevent it from updating whatever data structure
the original code version of that routine uses to designate some memory as allocated (as
well as preventing it from modifying the memory at whatever address the routine returns,
unless that address is in shadow memory). To allow the speculating thread to allocate
memory that it may need to generate accurate prefetches, the design specifies that the binary
modification tool should replace any calls in shadow code to recognized memory allocation
routines (e.g. the memory allocation routines in the standard C library) with appropriate
calls to the shadow allocation support routines (discussed in Section 6.3.2.2).

The SpecHint implementation

The SpecHint tool satisfies this specification by removing all trap instructions from shadow
code, except for the ones in the wrapper routines for thestat andlstat system calls (both of
which are commonly used to obtain information about a file). Issuing one of these system
calls can change only register values of the calling thread and the contents of a buffer
specified in the arguments to the call. The SpecHint tool guarantees that the specified
buffer is entirely contained within shadow memory. Figure 6.3 illustrates how, to provide
this guarantee, the SpecHint tool modifies the shadow code version of the wrapper routine
for thestat system call.

6.3.1.3 Signal masks and stack space

This section describes how the SpecHint design guarantees that, at all times after being ini-
tiated, speculating threads will block all but exception signals. For the reasons discussed in
Section 6.2.2, this should be sufficient to ensure that they will not produce direct or indirect
output by receiving asynchronous signals. It also describes how, based on an additional as-
sumption, the SpecHint design guarantees that speculating threads, while executing shadow
code, will always have enough space in the stack(s) that would be used for signal handling
to handle any signals they might receive. This is important because, in order to prevent
speculating threads from producing direct or indirect output by triggering exceptions, the
action specified for exception signals will always be to execute a signal handler. If, how-
ever, the stack that would be used to execute this handler has insufficient space when the

6.3. SAFETY OF SPECHINT 97

 add zero, #67, r0

 beq r19, success

 ... error handling code ...
success:

 ret (returnreg)

 trap
 add zero, #67, r0

 beq r19, success

 ... error handling code ...

 ret (returnreg)

 trap

success:

shadow_stat(char *path, struct stat *buffer)

 st a1, 0(sp)
 add sp, #8, a1

 add zero, #67, r0

stat(char *path, struct stat *buffer)

 beq r19, success

 ... error handling code ...
success:
 ld a0, 0(sp)
 add sp, #8, a1

 add sp, 8+sizeof(struct stat), sp
 ret (returnreg)

 trap

 call returnreg, shadow_memcpy

 sub sp, 8+SIZEOF(struct stat), sp

 add sp, 8+SIZEOF(struct stat), sp

 add zero, #SIZEOF(struct stat), a2

Figure 6.3: How to ensure the safety of thestat system call in shadow code, which may update a
memory area indicated by thebuffer argument. Simply replacingbuffer with the correspond-
ing pointer into shadow memory would not always be sufficient because thesizeof(struct
stat) -sized buffer area may cross a region boundary. If so, the data returned by thestat call
may overwrite non-shadow memory since no assumptions can be made about the relative positions
of copy-on-write region copies. A simple, safe alternative is to use the speculating thread’s stack for
temporary contiguous memory in shadow memory. Notice thatshadow memcpywill trigger soft-
ware copy-on-write as appropriate if any part of the memory area indicated by the originalbuffer
argument is in non-shadow memory. Finally, the initial stack pointer adjustment is preceded by a
check (as discussed in Section 6.3.1.1) that is omitted for simplicity.

operating system attempts to deliver an exception signal to the speculating thread, then the
operating system will terminate the process (as discussed in Section 6.2.2).

This SpecHint design guarantees that, at all times after being initiated, speculating
threads will block all signals except exception signals in the following manner. First, it
specifies that the binary modification tool ensure that any system calls that the original
thread would issue to change the process-wide signal mask become instead system calls
to change only the original thread’s signal mask. On most operating systems, this cannot
change the output of normal execution. Next, it specifies that, when a speculating thread
is spawned, its designated startup routine will be thethread init support routine(one of
the support routines for speculating threads) and that this routine will begin by setting the
speculating thread’s signal mask to block all but exception signals (and end by calling the
resynchronization routine). Finally, it guarantees that there is no other trap instruction in
all the code which the speculating thread can execute that could allow it to issue a system
call which could change its signal mask. It provide this guarantee by specifying that the
support routines for speculating threads and the exception handling support routine contain
no other trap instructions that could be used to change the speculating thread’s signal mask,

98 CHAPTER 6. DESIGN GOAL: SAFETY

and guaranteeing (as discussed in Section 6.3.2.3) that the speculating thread can execute
only support routines for speculating threads, the exception handling support routine, and
shadow code. This is sufficient because, as discussed in the previous section, the design
also guarantees that shadow code can contain no trap instructions which could be used to
change the speculating thread’s signal mask.

The stack(s) that would be used to handle signals will be either the speculating thread’s
stack, or a specified alternate stack. The SpecHint design does not allow speculating threads
or added normal execution to change the designation of an alternate stack, so an alternate
stack will only be specified due to the original normal execution. I will refer to the amount
that the operating system requires to deliver a signal to an empty signal handler (a signal
handler that simply returns) asOSHandleSpace. The SpecHint design is based on the
following additional assumption:

Assumption 6. If original normal execution specifies an alternate stack for signal han-
dling, then there will be enough (i.e.OSHandleSpace) read-able and write-able space at
the bottom of that stack for the operating system to deliver a signal.

I claim this is a reasonable assumption for a broad class of applications because, other-
wise, an exception would be triggered whenever the operating system attempted to deliver
a signal on this stack, to the original normal execution as well as to speculative execution.
This would defeat the purpose of the original normal execution specifying an alternate
stack. Based on this assumption, the SpecHint design guarantees that there will always be
enough space in any specified alternate stack to handle any signals the speculating thread
might receive by guaranteeing that the maximum amount of space needed to handle any
such signals will beOSHandleSpace. (How the design provides this guarantee is dis-
cussed in Section 6.3.2.1.)

The SpecHint design guarantees that, while executing shadow code, speculating threads
will always have enough space in their own stack to handle any signals they might receive
by guaranteeing (as discussed in Section 6.3.2.3) that the speculating threads can only enter
shadow code from one of the support routines for speculating threads, specifying that the
support routines for the speculating threads ensure that there is at leastOSHandleSpace
stack space available whenever they allow speculating threads to enter shadow code, and
guaranteeing that the speculating thread will never, while executing shadow code, be able
to change its stack pointer such that it will have less thanOSHandleSpace available in
its stack. The design provides the last guarantee by specifying the behavior of a type of
check I will refer to as astack pointer check, and what the binary modification tool must
ensure in modifying shadow code to include sufficient stack pointer checks. In particular,
the design specifies that thesafe stack areabe the memory allocated for the speculating
thread’s stack, excluding at leastOSHandleSpace at the top of the stack. (At the end of
this section, I give an example of why an implementation might decide to exclude more of
the stack.) The design specifies that the binary modification tool modify shadow code such
that a thread which executes shadow code will perform a stack pointer check before every
instruction that might otherwise change the value of the stack pointer to an address not in
the safe stack area. Finally, the design specifies that a stack pointer check abort the current

6.3. SAFETY OF SPECHINT 99

speculation if the address this instruction would change the stack pointer to is not in the
safe stack area.

The SpecHint implementation

The SpecHint implementation satisfies the specifications in this section. The SpecHint tool
makes no attempt to reduce the number of stack pointer checks; that is, it adds a stack
pointer check before every instruction that could change the stack pointer. Table 6.1 shows
how frequently such instructions occur during executions of some unmodified application
binaries. With my implementation and target system (Digital UNIX 3.2),OSHandleSpace
is only 4 KB. For the reasons discussed in Section 6.3.1.1, in order to reduce the number of
copy-on-write checks the tool adds to shadow code, the SpecHint tool defines the safe stack
area to also exclude the top and bottom 32 KB of the memory allocated for the speculating
thread’s stack, and my implementation of the support routines for speculating threads en-
sures that the speculating thread’s stack pointer will always contain an address in this safe
stack area upon entering shadow code.

6.3.1.4 Control transfers

This section describes how the SpecHint design guarantees that speculating threads will
be able to escape shadow code only by either calling a support routine for the speculating
thread or receiving an exception signal. This is important because it allows the design to
limit what code the speculating thread could possibly execute (and, therefore, the ways in
which it could produce direct or indirect output).

If a thread is executing in some code that fills one or more contiguous address ranges,
then it can escape that code only by either executing acontrol transfer(an instruction that
could cause a non-sequential change in the program counter), or executing sequentially past
the last instruction in one of those ranges. A control transfer is direct/indirect if its target
address is determined by a constant/register value. Thus, direct control transfers always
have only one target address, and it is always possible for a binary modification tool to
determine (and adjust) that target address. On the other hand, it may not be possible for
a binary modification tool to determine the possible target address(es) of indirect control
transfers.

The SpecHint design guarantees that speculating threads will be able to escape shadow
code only by either calling a support routine for the speculating thread or receiving an
exception signal, in the following manner. First, it specifies that the binary modification
tool insert a call to the resynchronization support routine (which never returns) after the
last instruction of all address ranges that contain shadow code for which the last instruction
may allow a thread to advance to the next address. Second, it specifies that the binary
modification tool ensure that all direct control transfers have, as their target address, either
an address in shadow code or the entry address of one of the support routines for speculating
threads. Finally, it specifies the behavior ofcontrol transfer checksand the check routine
called by control transfer checks, thecontrol transfer support routine, and what the binary

100 CHAPTER 6. DESIGN GOAL: SAFETY

modification tool must ensure in modifying shadow code to include control transfer checks.
In particular, to satisfy this guarantee, the SpecHint design specifies that the set ofvalid
target addressesexclude at least all addresses not either in shadow code or the entry address
of one of the support routines for speculating threads that the design specifies to be callable
from shadow code.1 (In the latter half of this section, I discuss why an implementation
would probably exclude many addresses in shadow code as well.) The design specifies that
the control transfer support routine behave as follows:

� It should expect an address as its argument.
� If the argument specifies a valid target address, then it should either return that ad-

dress, or abort the current speculation.
� If the argument specifies an address that is in original code (as opposed to shadow

code), and the corresponding address in shadow code is a valid target address, then it
should either return that address in shadow code or abort the current speculation.

� Otherwise, it should abort the current speculation.

(The design further specifies that the behavior of this support routine be restricted as de-
scribed in Section 6.3.2.3.) In addition, the design specifies that the binary modification
tool modify shadow code to include sufficient control transfer checks. In particular, the
design specifies that the binary modification tool modify shadow code such that a thread
which executes shadow code will call (with the correct return address) the control transfer
support routine before every indirect control transfer that might otherwise cause the pro-
gram counter to change to an address which is not a valid target address, specifying what
would be the target address of the control transfer as the argument to the routine, and will
then use the address specified as the routine’s return value as the target address of its control
transfer instead of the address it specified as the argument to the call. Notice that a binary
modification tool could meet this specification by modifying shadow code such that spec-
ulating threads will execute a control transfer check before every indirect control transfer
in shadow code. Notice also that, since shadow code is a copy of the original code, the
target addresses of most indirect control transfers will be in original code. Furthermore, as
discussed in Section 4.2.3, because the speculating thread’s stack is copied from the origi-
nal thread’s stack during resynchronization, some return addresses in the stack may specify
addresses in original code. However, prior work on binary modification [29] indicates that
it would be possible for a binary modification tool to determine and appropriately adjust
the target addresses of almost all indirect control transfers other than returns that may use
addresses copied from the original thread’s stack. This would reduce the amount of work
added to speculative execution.

1The design specifies that only the following support routines are callable from shadow code: the resyn-
chronization support routine (discussed in Section 6.3.1), the check support routines, the shadow allocation
support routines (discussed in Section 6.3.2.2), and the I/O support routines (discussed in the next chapter).
The design specifies that the thread init support routine (discussed in the previous section) can be called only
as the startup routine for the speculating thread, and the remaining support routines for speculating threads
can be called only from other support routines for speculating threads.

6.3. SAFETY OF SPECHINT 101

The SpecHint implementation

The SpecHint implementation satisfies the specifications in this section. To reduce the
number of necessary control transfer checks, the SpecHint tool adjusts all indirect control
transfers whose target addresses it can determine such that their target addresses are the
appropriate addresses in shadow code rather than original code. However, while (for my
benchmarks) it is able to determine the target addresses of almost all indirect calls, it is
not able to determine all possible target addresses of most returns (indirect jumps). In
particular, it allows the speculating thread to store and load return addresses in/from the
stack, but the tool does not perform the necessary data flow analysis to ensure that the
speculating thread cannot corrupt those stack values. Previous work [29] has demonstrated
that this would be possible.

The SpecHint tool greatly restricts the set of valid target addresses because it also uses
control target checks to ensure that the checks it inserts into shadow code will be executed
when they ought to be executed. To elucidate, control is said to “flow” from one instruction
to another when the second instruction is executed immediately after the first instruction.
In order to meet the SpecHint design’s specification about when the various checks must
be executed, any binary modification tool needs to ensure that control cannot flow in a
way that would allow a speculating thread to either skip a check, or jump to an instruction
that would cause the check to behave other than as intended – e.g. by jumping into an
address in the middle of a check or, since checks often rely on one or more addresses
being loaded correctly (like the address of a check support routine), jumping to any address
that would allow the thread to load incorrect addresses during a check. The SpecHint tool
modifies shadow code such that, as long as all the indirect control transfer whose target
addresses it could not determine could flow only to a particular subset of addresses, then
such misbehavior could not occur. This subset includes all the (adjusted) target addresses of
indirect control transfers whose target addresses it could determine, plus all addresses right
after calls that are not in checks (i.e. all expected return addresses, except the ones from
calls to check support routines since those addresses are always in the middle of a check).
Therefore, to satisfy the specifications of the SpecHint design, the SpecHint tool needs to
add control transfer checks only before indirect control transfers whose target addresses it
is unable to determine. In addition, to allow the control transfer support routine to detect
some (though not all) addresses in this restricted set of valid target addresses, the SpecHint
tool adds an initialized global data structures to the transformed binary which allows the
control transfer srpport routine to detect, and map from original code, entry addresses of
functions in shadow code, and valid return addresses in shadow code. (Mapping from return
addresses in original code to return addresses in shadow code is necessary to repair return
addresses stored in the stack, as discussed in Section 4.2.3.)

6.3.1.5 Discussion

This section discusses the advantages and disadvantages of shadow code. Note that I do not
claim that shadow code is the optimal design choice. The purpose of this section is simply

102 CHAPTER 6. DESIGN GOAL: SAFETY

to point out what the trade-offs might be between adding (and modifying) a complete copy
of the code, and modifying the original code to include the checks discussed during this
section such that the speculating thread could execute the original code. Notice that, since
the original thread should not perform any of these checks, modifying the original code
would also require adding a conditional branch before every check, that would cause the
original thread to skip the checks.

Adding a complete copy of the code has three potential disadvantages: 1) it will in-
crease the size of the binary by a greater amount, such that the binary requires more storage
space, 2) it may cause an execution of the binary to claim more physical memory in order
to hold both original and shadow code pages, and 3) it may cause speculating threads to
experience more page faults since the code pages they will need to execute will differ from
the code pages normal execution will bring into memory while it is executing. The first
may be a minor disadvantage in most cases since disk space is inexpensive and often un-
derutilized. The second is more problematic because, as discussed in the previous chapter,
increasing contention for memory can hurt the performance of normal executions. I observe
anecdotally, however, that code pages are usually a small fraction of the pages in physical
memory; physical memory tends to be filled mostly with heap pages and file pages. There-
fore, minimizing the number of code pages may not be of primary importance. Finally, the
third point will at most hurt the performance benefit of the design. My evaluation results
show that the performance benefits of my implementation of this design are substantial,
such that this design, while perhaps not optimal, is sufficient to answer the main questions
I set out to answer in this dissertation work (specifically, whether the speculative execution
approach, and an implementation that requires no operating system modifications specific
to this approach, have the potential to deliver substantial performance benefits).

In contrast, modifying the original code to include the same set of checks, plus an ad-
ditional conditional branch before each check that causes the original thread to skip the
check, has the following two potential disadvantages: 1) it will add work to normal ex-
ecution because normal execution will need to branch around each check, and 2) it may
cause normal execution to experience more page faults because the code it needs in order
to execute will now be spread out over more pages. Both of these are problematic be-
cause they will add overhead to normal execution. In particular, from the figures in the
last column of Table 6.1, these extra conditional branches might increase the number of
instructions executed during normal execution by over 20%. While this would not mat-
ter while executing an application that spends most of its execution time stalled on I/O,
it violates the design goal of low overhead. For example, it could substantially hurt the
performance of an application whose data is sometimes in memory. It would also make the
design more risky for application that spend a somewhat smaller fraction of their execution
time stalled on I/O, but might still benefit noticeably from I/O prefetching. Furthermore,
there is a disadvantage, from an implementation standpoint, to inserting instructions into
original code in a manner that changes the addresses of most instructions. In particular, the
binary modification tool would need to guarantee that all control transfers were properly
adjusted (either during modification or while executing the modified binary) to reflect those

6.3. SAFETY OF SPECHINT 103

address changes. This differs from the adjustment of control transfers in shadow code be-
cause shadow code is only executed by the speculating thread, and it is always reasonable
to simply abort the current speculation.

6.3.2 Support routines

The support routines provide functionality essential to the design that is not specific to any
particular application. The support routines can be divided, based on their function, into
the routines focused on enforcing safety, the routines focused on generating prefetches, and
the resynchronization support routine (which is essential to both functions). The previous
section specified a subset of the routines focused on enforcing safety, the check support rou-
tines, and some behavior of the resynchronization support routine. This section specifies
the other routines focused on enforcing safety, additional behavior of the resynchroniza-
tion support routine, and the general restrictions that the design imposes on sets of support
routines in order to allow it to provide, with two additional assumptions, the sets of guar-
antees discussed in Section 6.2 as being sufficient for acceptable safety. (Since the next
chapter focuses on the issues in developing a design that will generate accurate and timely
prefetches, the behavior of the resynchronization support routines that is focused on gen-
erating prefetches, and (aside from the general restrictions specified in this section) the
support routines focused on generating prefetches, are more properly specified in the next
chapter.)

Section 6.3.2.1 describes specifications for ensuring that the handling of signals cannot
produce direct or indirect output. Section 6.3.2.2 then describes specifications for ensuring,
that the speculating thread and added normal execution allocate and modify only memory
that does not overlap any pages mapped for original execution. Finally, Section 6.3.2.3
describes how the design restricts support routines.

6.3.2.1 Signal handling

This section describes how the design guarantees that the maximum amount of space
needed to handle any signals delivered to the speculating thread will be the maximum
amount required by the operating system to deliver a signal (which, as discussed in Sec-
tion 6.3.1.3, assists the design in guaranteeing that there will always be enough stack space
to handle any signals speculating threads may receive). It also describes how the SpecHint
design guarantees that the speculating thread cannot produce direct or indirect output by
receiving exception signals.

First, the SpecHint design specifies that the binary modification tool add an uninitialized
global data structure I will refer to as thehandling array. Each entry in this array will be
used to contain values indicating what action would have been specified for a particular ex-
ception signal type, and whether it would have been specified that the default action should
be restored as soon as one such signal is received. The entry should have one additional
entry that can be used to hold the same information about a prospective change during a
system call that may change the action specified for a signal. Second, the SpecHint design

104 CHAPTER 6. DESIGN GOAL: SAFETY

specifies that the exception handling support routine behave as follows when executed as a
signal handler:

� It requires no stack space.
� When executed by the speculating thread, it simply ensures that, when the speculating

thread next executes user-level code, it will start executing from the entry address of
the resynchronization support routine. It should accomplish this in a manner that
cannot trigger any exceptions, produces no direct or indirect output, and calls no
other routines.

� When executed by the original thread, it uses the values in the appropriate entry in
the handling array to cause the same effect as would have occurred had the exception
handling support routine not been designated as the specified signal handler (as dis-
cussed in Section 6.2.2). If the entry indicates that the default action would have been
restored, it updates that entry to indicate that the specified action would, in future, be
to terminate the process, and to indicate that the default action no longer needs to be
restored.

Third, the SpecHint design guarantees that the action specified for exception signals re-
ceived by speculating threads will always be to execute the exception handling support
routine without resetting the signal action. The SpecHint design provides this guarantee by
specifying three support routines for the original thread and when they should be called by
the original thread. Thethread spawn support routineshould be called shortly after normal
execution begins. It should discover the current action specified for each exception signal,
use this information to update the handling array, and then change the action specified for
each exception signal to executing the exception handling support routine, without resetting
the handler. Next, thepre-signal action support routineshould be called before the original
thread issues a system call that may change the specified action for an exception signal,
except when this system call is being performed on behalf of the thread spawn support rou-
tine. It should update the handling array entry for a prospective change, and then change
the parameters to the call such that they will instead specify that the action should be to exe-
cute the exception handling support routine without resetting the signal action. Finally, the
post-signal action support routineshould be called after the original thread returns from
a successful system call to obtain or change the specified action for an exception signal,
except when this system call is being performed on behalf of the thread spawn support
routine. If the call obtained the previous action, it should modify that information based on
the handling array entry for the appropriate signal type so that the returned action will be
what it would have been without support for speculative execution. In addition, if the call
changed the specified action, then it should reflect that in the handling aray by copying the
handling array entry for a prospective change to the entry for this signal type.

Since speculating threads block all signals but exception signals (as discussed in Sec-
tion 6.3.1.3), the third point, plus the specifications that the exception handling support
routine require no stack space and trigger no exceptions, are sufficient to guarantee that the
maximum amount of space needed to handle any signals delivered to the speculating thread
will be the maximum amount required by the operating system to deliver a signal. More-

6.3. SAFETY OF SPECHINT 105

over, assuming (as provided for in Section 6.3.1.3) that there will always be sufficient stack
space to handle any exception signals the speculating thread receives, these are sufficient
to ensure that the speculating thread cannot produce direct or indirect output by receiving
exception signals. Finally, for the reasons discussed in Section 6.2.2, these should be suffi-
cient to ensure that, in changing the actions specified for exceptions signals, added normal
execution would not produce unsafe changes in the output of a broad range of applications.

The SpecHint implementation

The SpecHint implementation is not a full implementation of this specification in two ways.
It does not keep track of whether actions should be reset, and it does not update returned
information about the previous signal action. None of my benchmark applications specified
that any signal handlers should be reset to their default, or used information about the
previous signal action.

6.3.2.2 Memory allocation

The SpecHint design relies on two additional assumptions. First, recall that, as discussed
in Section 6.2.2, any execution can map any page by demanding that page with the ap-
propriatemmap or shmat system call, even if the page was already mapped. I will refer
to mapping requests that could cause the operating system to map pages that are already
mapped, unmapping whatever was in those pages, aspreemptive mapping requests. Pre-
emptive mapping requests pose a problem for designs based on binary modification because
they could potentially cause the unmapping of any subset of the code and/or global data on
which such a design must rely.2 Thus, the SpecHint design relies on the following addi-
tional assumption:

Assumption 7.Original normal execution will not preemptively map a page that holds
code or global data added by the binary modification tool, or any part of the shadow thread’s
stack.

Second, the design maps pages only in two ways: via the system call to spawn the
speculating thread (which will cause the operating system to map pages to hold a stack for
the speculating thread), and viammap system calls that do not demand particular pages.
However, the design does not ensure that these pages will be unmapped before their be-
ing mapped interferes with the growth of the primary thread’s stack or thebrk heap. In
particular, the design relies on the following additional assumption:

2The safety of the SpecHint design also depends on no modifications being made to the code added
by the binary modification tool. Notice that original normal execution will not modify this code based on
Assumption 1 from Section 6.2.2. Software copy-on-write ensures that the speculating thread will not modify
this code while executing shadow code. Finally, the restrictions on all other code (e.g. support routines) added
by the binary modification tool (as detailed in the next section) ensure that this code will not be modified by
either added normal execution or the speculating thread while it is not executing shadow code. This does,
however, mean that this design may be ineffective (but safe) for applications whose data needs depend on
dynamically generated code.

106 CHAPTER 6. DESIGN GOAL: SAFETY

Assumption 8. The pages that operating systems will map in response to mapping
requests that do not specify particular pages will rarely interfere with the growth of the
primary thread’s stack or thebrk heap.

I claim that this is a reasonable assumption because, in order to decrease the likelihood
that mapped pages interfere with the growth of the primary thread’s stack or thebrk heap,
operating systems will automatically map pages far from the primary thread’s stack or the
brk heap when mapping requests do not demand particular pages. Since address spaces
are so large, it is rare for pages so mapped to interfere with the growth of those memory
regions.

The design specifies that the binary modification tool add code and global data to the
transformed binary such that they will not overlap any pages already claimed in the origi-
nal binary, and the pages they use are unlikely to interfere with the growth of the primary
thread’s stack or thebrk heap. The design guarantees that the speculating thread’s stack
does not overlap any pages mapped for original execution by specifying some behavior of
the thread spawn support routine. In particular, it specifies that this routine should (after ini-
tializing signal handling as described in the previous section) spawn the speculating thread
with attributes indicating that its stack should be surrounded by a guard page on either
side. (A guard page is an inaccessible page located on either side of some data structure.)
This will cause the operating system to map a set of contiguous pages for the speculating
thread’s stack, such that the stack will not overlap any previously mapped pages.

Assuming that speculating threads can only allocate memory by calling allocation rou-
tines in the memory allocation support package (which is provided for in Section 6.3.2.3),
the design guarantees that memory allocated by speculating threads cannot overlap any
pages mapped for original execution by specifying the behavior of thememory allocation
support package, which contains the shadow allocation support routines, and some support
routines for original threads. In particular, the design specifies that the memory allocation
support package behave as follows:

� The package maps pages by issuingmmap system calls that do not demand particular
pages.

� The package includes a routine that will explicitly unmap all pages it mapped since
the last time it executed this routine (but not any other pages), by issuingmunmap
system calls. I will refer to this set of pages as the pages “currently managed by”
the package. This routine also updates all roots (in global data) of data structures
allocated by support routines for speculating threads to reflect the fact that those
data structures are now empty (such that the support routines will rebuild those data
structures from scratch). This routine can be called only from the resynchronization
support routine, such that it can be considered part of the resynchronization support
routine.

� The package divides memory on pages it is currently managing into two pools: the
shadow memory pooland thenon-shadow memory pool.

� When a shadow/other allocation routine is called to obtain some amount of memory,
it either returns a pointer to a contiguous unused memory buffer of the correct size

6.3. SAFETY OF SPECHINT 107

that is entirely contained on pages in the shadow/non-shadow memory pool (updating
the package’s notion of what memory is unused and what buffers are in use), or aborts
the current speculation. And,

� When a shadow/other allocation routine is called to release memory, if the address
provided specifies an in-use memory buffer in the shadow/non-shadow memory pool,
then it should update the package’s notion of what memory is used and unused. Oth-
erwise, it should simply return.

The non-shadow memory pool is intended for data structures allocated for use internal
to the support routines for speculating threads (e.g. whatever data structure the copy-on-
write support routines use to maintain the mapping between non-shadow memory regions
and their copies in shadow memory). Notice that, since shadow memory consists of the
speculating thread’s stack and memory allocated via a shadow memory allocation routine,
the copy-on-write checks will ensure that the speculating thread cannot modify pages in
the non-shadow memory pool while executing shadow code.

The design also specifies some behavior of the resynchronization support routine as
follows. Upon entering the resynchronization support routine at its entry address, the spec-
ulating thread will immediately call the routine which explicitly unmaps all pages currently
managed by the memory allocation support package. Subsequently, it will not proceed be-
yond a certain point in the routine, i.e. before all actions that might result in a memory
allocation call, until the original thread is not in the process of performing a check that I
refer to as apreemptivemappingcheck. The design specifies the behavior of preemptive
mapping checks, and when they should be performed, as follows. The design specifies that
the binary modification tool ensure that original threads will perform a preemptive map-
ping check whenever they execute a trap instruction that may cause the operating system
to unmap a mapped page. The design further specifies that the tool will ensure that spec-
ulating threads cannot have anmmap call in progress while such a check is in progress.
The design specifies that the check cause the original thread to behave as follows. If the
trap instruction may cause the operating system to unmap a page currently managed by the
memory allocation support package, then, before executing the trap instruction, the origi-
nal thread will send an exception signal to the speculating thread and then block until the
speculating thread has unmapped all pages currently managed by the memory allocation
support package. The check is said to have ended after the original thread returns from the
trap instruction.

Since (as discussed in Section 6.3.1.3 and the previous section) the design guarantees
that the speculating thread will not block exception signals, and will enter the resynchro-
nization support routine at its entry address after receiving an exception signal, the speci-
fications above for the resynchronization support routine guarantee that generating an ex-
ception signal for the speculating thread will result in the speculating thread unmapping
all pages currently managed by the memory allocation support package. Therefore, the
specifications above regarding preemptive mapping checks ensure that the memory alloca-
tion support package will unmap all pages it is managing if the original thread is about to
preemptively map one or more of those pages, such that the package will never mistakenly

108 CHAPTER 6. DESIGN GOAL: SAFETY

believe that it is managing a page that is actually mapped for original execution. Finally,
by forcing the speculating thread to switch from whatever code it was executing to the
resynchronization support routine, these specifications ensure that the speculating thread
could not modify a page mapped for original execution due to a race condition between the
speculating thread and the original thread.

Notice that the design causes the speculating thread to release all mapped pages every
time it resynchronizes with the original thread. In addition to relying on this behavior in
ensuring that preemptive mapping requests for pages allocated by the speculating thread do
not enable the speculating thread to modify pages mapped for original execution, the design
also uses this mechanism to prevent the speculating thread from introducing memory leaks.
Moreover, it depends on this mechanism to reduce the likelihood that the speculating thread
will hog so much memory that the operating system would refuse mapping requests from
the original normal execution. The design could easily be modified to further reduce the
likelihood that the design could cause original normal execution to fail mapping requests by
ensuring that, if a mapping request from original normal execution is refused, the original
thread will send a signal to the speculating thread, block until the speculating thread has
released its pages, and then issue a new mapping request (i.e. something similar to what is
described above). Entirely eliminating the possibility that the design could cause normal
execution to fail a mapping request may not be feasible, however, because this could require
unmapping all the code and global data added by the binary modification tool as well, and
the design relies on the continued presence of that code and global data.

The SpecHint implementation

The SpecHint implementation does not meet this specification in a number of ways. First,
it does not check for preemptive mapping requests by original normal execution. None
of my benchmark applications issued any preemptive mapping requests. Second, it does
not ensure that the code and global data it adds will not overlap any pages claimed in the
original binary. Finally, the memory allocation support package issues calls to the standard
library dynamic allocation routines (e.g.malloc) rather than issuingmmap calls. This did
not present a problem for my benchmark applications because they all used the standard
library dynamic allocation routines, and their original normal executions only accessed
memory (versus pages) that contained original code or original global data, and memory
allocated via these allocation routines. I claim that the latter is the case for all well-written
applications, and the former is the case for most applications.

On the other hand, if the standard library allocation routines use thebrk heap, then this
implementation could cause applications which use their own dynamic allocation package
to malfunction. The problem is thatbrk/sbrk imply that the entire heap area above the
returned pointer is available. Therefore, if the original thread uses a memory allocation
package built onbrk/sbrk , and the speculating thread uses a standard library allocation
package built onbrk/sbrk , it may be possible (depending on how each allocation pack-
age is implemented) for the original and speculating threads to simultaneously believe that
they own the same memory region. This mixup could occur because the speculating thread

6.3. SAFETY OF SPECHINT 109

would not be updating the data structures of the allocation package used by the original
thread (and could be avoided if there were a way to ensure that the speculating thread uses
the same memory allocation package as original normal execution).

Finally, my implementation of the memory allocation support package also limits the
total amount of memory that the speculating thread can have allocated at any time.

6.3.2.3 General restrictions

The SpecHint design restricts the behavior of support routines in various ways in order to
provide the guarantees discussed in Section 6.2. This section describes these restrictions
and how they combine with the guarantees from previous sections.

The SpecHint design specifies that the behavior of all support routines (and any other
work added to normal execution) be restricted such that an executing thread cannot trig-
ger any exceptions, and can issue only system calls specified explicitly by the design, and
guaranteed to return to user-level code. The design also specifies that the behavior of all
support routines for speculating threads be additionally restricted such that, while speculat-
ing threads execute any such routine:

� They can modify only global data added by the binary modification tool, the specu-
lating thread’s stack, and pages mapped via a memory allocation support routine.

� They can leave the routine only by returning normally (i.e. returning to the return
address provided when the routine was called), issuing system calls, calling a routine
in shadow code or another of the support routines for speculating threads (except
the thread init support routine), or jumping to a valid target address (as specified in
Section 6.3.1.4) in shadow code. And,

� If they leave the routine to enter shadow code, they ensure that their stack pointer will
contain a value in the safe stack area (as specified in Section 6.3.1.3) upon entering
shadow code.

Combined with the guarantees discussed in Sections 6.3.1.3, 6.3.1.4, and 6.3.2.1, these are
sufficient to ensure that Figure 6.4 captures the control flow of the speculating thread. No-
tice that the speculating thread can execute only support routines for speculating threads,
the exception handling support routine, and shadow code. Therefore, since the only system
calls that the speculating thread can issue are the call to set its signal mask such that it
will block all but exception signals (from the thread init support routine), the calls to map
and unmap memory from the memory allocation support package (which cannot produce
direct or indirect output for the reasons discussed in the previous section), I/O prefetching
calls (which the design assume cannot produce direct or indirect output), and the calls from
shadow code (which cannot produce direct or indirect output for the reasons discussed in
Section 6.3.1.2), the speculating thread cannot produce direct or indirect output by issuing
system calls, cannot map devices into its address space, and will block all but exception
signals. Moreover, since the speculating thread can only modify global data added by the
binary modification tool, its stack, and pages mapped via a memory allocation support rou-
tine (because of copy-on-write checks, restrictions on system calls, and the specifications

110 CHAPTER 6. DESIGN GOAL: SAFETY

Thread init
support routine

Resynchronization
support routine

Shadow code

Other support routines
for speculating threads

support routine

Thread

Exception handling

Receive exception signal

spawned

Figure 6.4: Allowed control flow of the speculating thread.

above), and since these cannot overlap pages mapped for original execution (as discussed in
the previous section), the speculating thread will not modify data on any page mapped for
original execution. By the same reasoning, the speculating thread also cannot modify code
added by the binary modification tool. Finally, since the speculating thread will always
have enough stack space to handle any signals it receives (as discussed in Section 6.3.1.3),
and it cannot produce direct or indirect output by handling signals (as discussed in Sec-
tion 6.3.2.1), it cannot produce direct or indirect output by triggering exceptions. There-
fore, the design provides the set of guarantees discussed in Section 6.2 as being sufficient
to ensure that the speculating thread will not produce direct or indirect output.

Finally, the design specifies that the behavior of all added normal execution be addition-
ally restricted such that each sequence of added normal execution that an original thread
performs (including any support routines it calls):

� Begins by changing its signal mask to block all signals and ends by changing its
signal mask back to its prior setting.

� Allows it to modify only global data added by the binary modification tool, its stack,
and pages mapped via a memory allocation support routine.

� Always completes. And,
� Upon completing, always leaves its stack and register values as they were when the

sequence began, except for any dead values, and that the program counter should
now specify the instruction which would have been executed next had the sequence
not taken place.

Since the only system calls added normal execution can issue are the calls associated
with spawning the speculating thread (which will not produce direct or indirect output
for the reasons discussed above), and the calls associated with initializing the signal han-
dling (which will not produce direct or indirect output for the reasons discussed in Sec-
tion 6.3.2.1), this is sufficient to ensure that added normal execution will not produce di-

6.4. SUMMARY 111

rect or indirect output by issuing system calls, map devices, or change (without restoring)
thread state maintained by the operating system. Moreover, since global data added by the
binary modification tool and pages mapped via a memory allocation support routine will
not overlap pages mapped for original execution, this is sufficient to ensure that added nor-
mal execution will not change (without restoring) any live values on any pages mapped for
original execution. Therefore, the design provides the set of guarantees discussed in Sec-
tion 6.2 as being sufficient to ensure that added normal execution will not produce direct or
indirect output.

The SpecHint implementation

The SpecHint implementation falls short of these specifications in two ways. First, added
normal execution does not change the original thread’s signal mask. I claim that allowing
signals to be received during added normal execution rather than original normal execution
will rarely change the output of normal execution because it could only do so if original
normal execution designated a signal handler whose effect would differ depending on what
code the original normal execution was executing when the signal arrived. Second, the
support routines call some byte and string manipulation routines in the standard C library,
assuming they will behave as expected (e.g. that, if all strings are terminated and all speci-
fied buffers are properly accessible, they will return without triggering any exceptions after
changing at most register values and the contents of any specified input buffers). The rou-
tines are:bcopy, bzero, strcmp, strcpy, andstrlen. If these routines should not be trusted,
they could easily be re-implemented within the support routines.

6.4 Summary

Performing speculative execution could change the behavior of a system in a variety of
ways. While some potential changes would probably be considered beneficial (e.g. re-
ducing I/O stall times), others might be perceived as malfunctions. A design for adding
speculative execution should strive to avoid causing changes that would be perceived as
malfunctions.

Every design will be based on some assumptions about what changes would be “safe”.
Thesafetyof a design can be thought of as the likelihood that these assumptions are true
in practice. This chapter begins by assuming that all changes in execution output are un-
safe, except those that result from changes in allotment of physical and operating system
resources. This may be sufficient for a design that is allowed to include operating system
modifications. Otherwise, however, additional assumptions may be necessary.

The chapter proposes a set of additional assumptions that hold for a broad range of
applications, and simplify the task of developing a design that can be both safe and effective
for such applications. For example, one assumption is that original normal executions will
access only the pages in their address space that contain their code, global data, stack(s)
and heap(s). This assumption is based on the fact that, ordinarily, accessing any other page

112 CHAPTER 6. DESIGN GOAL: SAFETY

would cause the execution to trigger an exception. Relying on this assumption enables a
design to allow a speculative execution sharing an address space with a normal execution
to modify its own set of pages without fear that, in doing so, it will affect the behavior of
the normal execution.

The chapter also describes how the SpecHint design guarantees that it will rely only on
these and three additional assumptions that are also true for broad range of applications.
The basic approach is to limit what output-producing actions speculative execution could
possibly perform by limiting what code it could execute, and ensuring certain properties
about that code.

Chapter 7

Experimental setup

My implementation of the SpecHint design consists of theSpecHint tooland theSpecHint
object files. It takes advantage of the TIP informed prefetching and caching manager, and a
prefetch-aware software striper [43]. In particular, speculating threads will issuehint calls
to TIP, specifying what data to prefetch, and rely on TIP and the striper to schedule ac-
tual prefetches. In my evaluation, I compare the performance of speculating applications
(produced using the SpecHint tool and object files) with unmodified applications, and ap-
plications that were manually modified to issue hint calls to TIP. The manual modifications
were performed by the TIP research team. To provide insight into how much effort they
expended in manually modifying these applications, I also describe the modifications they
made.

Section 7.1 describes my evaluation environment. Section 7.2 describes details about
the SpecHint tool and object files, and how the application executables used in the evalua-
tion were produced. Finally, Section 7.3 describes the benchmarks used in my evaluation.

7.1 Evaluation environment

My experiments were conducted on an AlphaStation 255 (233 MHz Alpha 21064 proces-
sor) with 256MB of main memory. This machine has a fast, wide, differential SCSI adapter
that hosts four HP2247 1 GB disks (15 ms average access time), so an average access time
is equivalent to 3.5 million processing cycles. While this system is now quite out-of-date, I
performed simulation experiments that project performance for current and future systems.
The results of these experiments (discussed in Section 8.3) suggest that the performance
benefit of of my approach will not decrease, and may even increase, as the gap between
processing speeds and disk access times continues to widen.

My test machine runs Digital UNIX 3.2g with the unified buffer cache (UBC) module
replaced by theTIP informed prefetching and caching manager[43, 41]. As described in
Section 2.2.3.1, TIP was designed to optimize usage of the memory buffers allotted to
the file cache when provided with disclosure hints that specify the future data accesses of
an executing application. Thus, TIP simplifies SpecHint by allowing speculating threads

113

114 CHAPTER 7. EXPERIMENTAL SETUP

 Disk Disk Disk Disk

Disk reads

Application
Normal

execution
Speculative
execution

Data Hints

Data

Reads

Demand reads
& prefetches

TIP system
(manages 12MB cache & I/O resources)

Software striper
(64KB stripe unit; queues prefetches)

Data

 Kernel boundary
 Digital UNIX 3.2g

 Fast-wide-differential
 SCSI (20MB/s)

Figure 7.1: Interaction between speculating executable, TIP, software striper and disks.

to issue hint calls at any time (i.e. as quickly as they are able) and simply rely on TIP to
schedule prefetches in a dynamic resource-aware manner. In my experiments, the file cache
size was fixed at 12MB, the size used by the creators of the benchmark suite [43]. Current
file caches are often larger, but the data sets used by the benchmarks have not been updated
to reflect the growth in data set sizes since the benchmark suite was assembled. The file
cache block size is 8 KB.

The disks are bound into a RAID Level 0 (i.e. no redundancy) disk array by a prefetch-
aware software striper with a stripe unit of 64KB. This striper distinguishes between de-
mand and prefech requests, and attempts to limit delay of demand requests by queueing
prefetch requests as described in Section 7.1.1. Figure 7.1 illustrates the interactions be-
tween a speculating executable, the TIP prefetching and caching manager, the software
striper and the I/O system.

Digital UNIX 3.2g is optimized for I/O in two ways. First, to increase the disk posi-
tioning efficiency and decrease the CPU cost of sequential disk accesses, it will cluster up
to eight contiguous block accesses (i.e. 64 KB) into a single disk request. On the testbed
system, block contiguity checks take the 64 KB stripe unit into account to ensure that each
cluster results in a request to a single disk. Second, to decrease the latency of sequential
file accesses, sequential readahead is initiated for the same number of blocks as the cur-
rent run of sequential accesses to a file, up to a maximum of eight clusters of eight blocks
each. For example, if an application sequentially reads four blocks in a file, the system

7.1. EVALUATION ENVIRONMENT 115

will initiate readahead for the next four blocks in the file. With TIP, hinted accesses do
not trigger the readahead policy. Therefore, an application that provides accurate hints can
avoid unnecessary readahead.

The executables and data files used in the experiments were written to an empty file
system. Therefore, files are more likely to be laid out sequentially, and files in the same
directory are more likely to be proximate, than in a mature file system (which would be
fragmented due to deletions and insertions over time). The file cache is flushed before each
run. All reported results are averages over five runs.

7.1.1 Prefetch-aware software striper

The software striper [43, 41] makes multiple disks appear as a single disk to the rest of the
system, enabling I/O parallelism within a single file system. The file system and TIP are
both aware of the 64 KB stripe unit such that they will not issue requests that span multiple
disks. When the striper receives an I/O request, it maps the request to the appropriate disk
and disk blocks. Then, if the request is a demand request, it immediately forwards the
request to the appropriate disk driver. If the request is a prefetch request, it either forwards
the request or queues the request internally.

The striper queues prefetch requests internally in order to reduce the amount by which
prefetch requests (including readahead requests) will delay demand requests. It maintains
a prefetch queue for each disk and, to reduce disk positioning times, sorts the requests in
each queue according to the CSCAN (i.e. circular scan) scheduling algorithm [14]. In
my experiments, unless otherwise specified, the striper will issue prefetch requests to a
disk only when the disk has less than two (prefetch and/or demand) requests outstanding.
The striper is allowed to issue a prefetch request to a disk that already has one request
outstanding in order to eliminate disk idle time between requests.

The implementation of the striper has two shortcomings that could potentially hurt the
performance of speculating applications. First, the striper does notice if a prefetch request
in one of the striper’s prefetch queues is promoted to a demand request (by a demand
access). Therefore, a promoted request could potentially sit in one of those queues for
a substantial amount of time. Second, once a prefetch request has been received by the
striper, there is no way to cancel it. Therefore, even if it is determined that a prefetch will
prove to be useless while it is in one of the striper’s prefetch queues, the prefetch will still
occur, possibly delaying demand requests or other prefetch requests. These do not affect
the performance of the manually modified applications used in my evaluation since those
applications generate few or no incorrect hints. However, it may hurt the performance of
the speculating applications that generate many incorrect hints. These effects were not
measured in this dissertation work.

116 CHAPTER 7. EXPERIMENTAL SETUP

7.2 SpecHint tool and object files

The SpecHint tool and object files are my implementation of the SpecHint design. The tool
transforms Digital Unix 3.2 (Alpha architecture) binaries, and is implemented in 19,000
lines of sparsely commented C code. The object files, which will be linked into a specu-
lating executable, mainly consist of the code for the speculative execution support routines
and data structures. They were produced using the nativecccompiler for Digital Unix 3.2g
from 6,000 lines of heavily commented assembly code.

To simplify the implementation of the SpecHint tool, the input binaries must be stat-
ically linked and, unlike executables, retain their relocation information. Projects like
EEL [29], ATOM/OM [54] and Etch [45] have demonstrated that executables can be mod-
ified safely. To handle shared libraries, the tool would need to be able to produce modified
versions of shared libraries for use with speculating executables, and cause the speculat-
ing thread to abort its current speculation if it attempts to call a routine in a shared library
for which it is unable to find a modified version. This should not present any technical
difficulties.

The SpecHint tool is relatively unsophisticated in terms of static optimizations. For
example, it does not perform any loop optimizations to reduce copy-on-write checks, even
though such optimizations may be able to substantially decrease the dilation factor (the
relative speed of speculative execution to normal execution). (In terms of reducing copy-
on-write checks, the tool implements only the optimization explained in Section 6.3.1.1 for
eliminating copy-on-write checks before loads and stores off the stack pointer and global
pointer.)

The shadow code versions of some lock handling routines for thread synchronization
are specified as dummy routines. It is unnecessary and counter-productive to synchronize
data accesses by the original and speculating threads since the speculating thread cannot
change data values seen by the original thread, and needs to execute ahead of the original
thread to produce useful hints.

7.2.1 Producing executables

Each of the benchmark applications used in my evaluation has two versions of source code,
the original source code and source code manually modified to issue TIP hints. I gener-
ated object files from this source code using the nativecc compiler for Digital Unix 3.2g
with the -O2 optimization flag. For linking, I used the standard linker for Digital Unix
3.2g. During my evaluation, I used several executable versions for each application. The
Original version of each application is the executable produced by linking the object
files generated from the original application source code. TheManual hints version
of each application is the executable produced by linking the object files generated from
the application source code manually modified to issue hints. The evaluation also use sev-
eral different speculating versions of each application. Figure 7.2 illustrates the process I
used to produce these speculating versions. First, I produced a binary by linking the object
files generated from the original application source code, with the SpecHint object files and

7.2. SPECHINT TOOL AND OBJECT FILES 117

Standard
linker

Standard
linkertool

Libraries
for

threading

application
Speculating

executable

Application
object files
and libraries

SpecHint
object files

SpecHint

Figure 7.2: Producing speculating executables. The application object files shown in the figure are
produced from original application source code. The SpecHint object files contain the SpecHint
support routines. The libraries to support threading are required because the original application is
single-threaded.

the standard libraries that provide thread support (the reentrant C library, themach library
and the POSIX-compliantpthreads library for Digital Unix 3.2g). I used the-r linker
flag, which generates (non-executable) binaries that still retain relocation information (re-
quired by the SpecHint tool). Next, I passed this resulting binary as input to the SpecHint
tool, which generates a modified binary. Finally, I produced an executable by passing this
modified binary to the linker, without any flags (so that the linker strips out relocation in-
formation). For comparability, all application executables used in the evaluation are linked
statically.

I produced multiple speculative versions of each benchmark application.Naiverefers
to the version of each benchmark application that was transformed according to my im-
plementation of the SpecHint design. My implementation can also, optionally, produce
transformed applications that include additional mechanisms, not specified by the SpecHint
design. These optional mechanisms (described in Sections 5.2.3, 4.2.4, and 4.2.5) attempt
to improve the effectiveness of speculative execution. I produced versions of each bench-
mark application that include various combinations of these mechanisms in order to isolate
their cost and benefit. In particular, version names which includeFilter incorporate the
mechanism described in Section 5.2.3 for predicting which hints are likely to be incorrect
and filtering out those hints. Version names which includeClear, Set, or Int incorporate
the simple heuristic described in Section 4.2.5 that attempts to improve the effectiveness of
speculative execution by choosing specific values for stale memory locations. Specifically,
Clear executables logically clear the bits in stale memory locations (i.e. set them to zero),
Setexecutables logically set the bits in stale memory locations (i.e. set them to an integer
value of -1), andInt executables logically fill stale memory locations with the integer value
of one. Finally, version names that includeSlicing incorporate the mechanism described
in Section 4.2.4 which enables speculating threads to detect and skip code that they do not
need to execute to generate correct hints.

118 CHAPTER 7. EXPERIMENTAL SETUP

Benchmark Application Description
Agrep Text search utility Search for a string in many small files
XDataSlice Data visualization tool Retrieve slices of a three-dimensional data set
Gnuld Link editor Generate an executable from many object files
Postgres 80% Relational database Perform a database join (finds many matches)
Postgres 20% Relational database Perform a database join (finds fewer matches)
Sphinx Speech recognition tool Recognize a recording

Table 7.1: Summary of benchmarks. These benchmarks come from the TIP benchmark suite [43,
41]. The TIP benchmark suite also includes aDavidson benchmark which I was unable to use
because that application is written in Fortran.

7.3 Benchmark applications

I evaluated SpecHint using the six TIP benchmarks [43, 41] listed in Table 7.1. The TIP
benchmark suite consists of seven benchmarks using six applications, but I was unable
to include one of them because the application (Davidson) was implemented in Fortran
and my SpecHint tool contains some shortcuts such that it may refuse to modify a binary
not produced by the nativecc compiler. There are two major advantages to using this
benchmark suite. First, it is one of the few existing I/O benchmark suites that relies on a
variety of real-world, non-scientific applications. Second, the creators of the benchmark
suite also produced a version of each application’s source code that has been manually
modified to initiate prefetching by issuing TIP hints (which I used without change).

7.3.1 Agrep

The Agrepbenchmark uses version 2.04 of the Agrep application [71]. Agrep, a variant
of the standard UNIX Grep utility, is a fast full-text pattern matching utility that allows
matching errors. The benchmark searches a bunch of text files for a simple string that does
not occur in any of the files. In terms of data requests, it loops through the files specified
in its command line, opening and sequentially reading each file entirely. That is, the data
requests issued by the benchmark are completely determined by its command line. The
data files are 1349 source files for the Digital Unix kernel. They occupy a total of 2922
blocks and have sizes distributed as shown in Table 7.2.

Manually modifying Agrep to issue TIP hints is easy. Before reading any files, Agrep
loops through all of the filenames specified in its command line to check whether each file
exists. Manually modifying Agrep simply involves inlining a TIP hint call after a successful
check as shown in Figure 7.3.

7.3. BENCHMARK APPLICATIONS 119

Number of 8 KB blocks in the file
1 2 3 4 5 6 7 8 9 10-38

Number of files 798 279 98 52 37 19 16 9 9 32
Cumulative % files 59% 80% 87% 91% 94% 95% 96% 97% 98% 100%
Cumulative % blocks 27% 46% 56% 64% 70% 74% 78% 80% 83% 100%

Table 7.2: Distribution of data file sizes for Agrep benchmark. Sequential readahead by the opera-
ting system is completely ineffective for files that fit in a single cache block, and is most effective
for long sequential accesses.

 if (stat(unchecked_filename, &buf) == 0) {
 whole_file_hint(unchecked_filename);

while (another_unchecked_filename) {

 add_to_list_of_files_to_search(unchecked_filename);

}

Code with inlined hint call

 }

Figure 7.3: Pseudo-code showing how Agrep can be modified to issue effective TIP hints simply by
inlining a TIP hint call.

7.3.2 XDataSlice

The XDataSlicebenchmark uses a modification of version 2.2 of the XDataSlice appli-
cation [11]. XDataSlice is a data visualization tool developed by the National Center for
Supercomputing Applications (NCSA) that, among other things, allows users to view false-
color representations of arbitrary planar slices through a three-dimensional data set. The
NCSA version of the application was limited to data sets that fit in memory. The version
used as the original in my benchmarks was modified to load data dynamically from larger
data sets [41]. The benchmark retrieves a fixed set of 25 random slices through a 512 MB
three-dimensional data set. In terms of data requests, it loops through the entries in an input
file specified in its command line and, for each entry, retrieves the data for the slice spec-
ified by that entry. Because each slice is an arbitrary cut through a three-dimensional data
set, the accesses to the 512 MB data file are strided, but cannot be captured with a single
stride size.

Manually modifying XDataSlice to issue TIP hints was complicated by the fact that
XDataSlice issues data requests via a two-layer library (that NCSA developed for access-
ing files in a format called the Hierarchical Data Format). For each slice, the XDataSlice-
specific code issues a request for the corresponding list of “blocks” in the data set to the
higherDFSDlayer of the library. TheDFSDlayer loops through this list of blocks, calcu-
lating and issuing the corresponding request for logical byte ranges in objects to the lower
H layer of the library. For each such request, theH layer calculates and issues the corre-
sponding request for actual byte ranges in a file. Therefore, only theH layer has enough

120 CHAPTER 7. EXPERIMENTAL SETUP

 logical_addrs = get_logical_addrs(dataset_block);
 H.request(logical_addrs);
}

foreach dataset_block {

 H.hint(logical_addrs[i]);
 i++;

foreach dataset_block {

}

Original code

 logical_addrs[i] = get_logical_addrs(dataset_block);

i = 0;

i = 0;
foreach dataset_block {
 H.request(logical_addrs[i]);
 i++;
}

Modified loop-split code

Figure 7.4: Pseudo-code showing how the loop in the DFSD layer of the XDataSlice application is
transformed such that TIP hints will be issued effectively.

information to issue a TIP hint. However, theH layer cannot determine what data will be
needed in the future. Since violating application modularity is poor programming practice,
this layering complicated the process of manually modifying XDataSlice to issue effective
TIP hints. To preserve the modularity of the application, the manually modified XDataSlice
extends the interface to theH layer by a call whose arguments specify logical byte ranges
that will be needed in the future, and that issues corresponding TIP hint calls. In addition,
as shown in Figure 7.4, the loop in theDFSDlayer was split after promoting a scalar loop
variable to an array variable such that these hint calls can be issued early enough to hide I/O
latency without requiring all work to be repeated. This type of transformation, commonly
called(inner) loop distribution, is commonly performed in the context of array-based codes
to increase parallelism.

7.3.3 Gnuld

TheGnuldbenchmark uses version 2.04 of the Gnuld application. Gnuld is the Free Soft-
ware Foundation’s object code linker. The benchmark creates an executable by linking a
bunch of object files. In terms of data requests, it performs multiple passes over the files
specified in its command line, reading different portions of each file on each pass. During
the first pass, for each file, it reads some headers from the beginning of a file, and then some
symbol information from an offset that is obtained from those headers. Subsequent passes
read different object file sections, where the offset of a particular section in a particular file
is obtained from the initial headers. The data files are 562 object files for the Digital Unix

7.3. BENCHMARK APPLICATIONS 121

}

 hint(ofile[i], 0, header_size);
for (i=0; i < NUM_OFILES; i++) {
 read(ofile[i], ofile[i].headers, header_size);
 hint(ofile[i], ofile[i].headers.offset_of_symbol_info, symbol_info_size);

}

for (i=0; i < NUM_OFILES; i++) {
 read(ofile[i], ofile[i].headers, header_size);

for (i=0; i < NUM_OFILES; i++)

 read(ofile[i], ofile[i].symbol_info, symbol_info_size);
 lseek(ofile[i], SEEK_SET, ofile[i].headers.offset_of_symbol_info);

for (i=0; i < NUM_OFILES; i++) {
 lseek(ofile[i], SEEK_SET, ofile[i].headers.offset_of_symbol_info);
 read(ofile[i], ofile[i].symbol_info, symbol_info_size);
}

Original code

Modified loop-split code

Figure 7.5: Pseudo-code showing how the loop for the initial pass in Gnuld is transformed. A new
loop is inlined before the original loop, and the original loop is split such that TIP hints can be
issued early enough to be effective.

kernel, occupying a total of 7361 blocks.
Manually modifying Gnuld to issue TIP hints involved splitting one loop, and inlining

three new loops. First, a new loop was inlined before the loop that implements the first
pass to hint the headers at the beginning of each file. Next, the loop that implements the
first pass was split to enable effective hinting of the read requests for symbol information.
Pseudo-code for these transformations is shown in Figure 7.5. Finally, new loops were
added before the two loops that implement the subsequent passes in order to generate hints
for the reads in those loops.

7.3.4 Postgres

ThePostgres 20%andPostgres 80%benchmarks use a modification of version 4.2 of the
Postgres application [57]. Postgres is an object-oriented relational database developed at
the University of California at Berkeley. The version used as the original in the benchmark
has better performance than the Berkeley version because it was modified to more fully
exploit caching using a technique that is employed by most commercial databases [43, 41].
In particular, the Berkeley version performs a join of two relations by looping through the
tuples of the outer relation once. During this loop, for each outer tuple, it checks the inner
relation’s index for a matching inner tuple and, upon finding such a match, reads the tuple
and outputs the match. The version used as the original in the benchmark instead performs
a join of two relations by looping through the tuples of the outer relation twice. During

122 CHAPTER 7. EXPERIMENTAL SETUP

the first loop, for each outer tuple, it checks the inner relation’s index for a matching inner
tuple and, if one exists, simply records the location of that tuple. Then, during the second
loop, for each outer tuple, if there is a recorded match, it reads the recorded inner tuple and
output the match. This improves performance because, while it is being used during the
first pass, the inner tuple’s index does not need to compete for cache space with the inner
tuples.

Each of the benchmarks perform a join of two relations. In terms of data requests, the
outer tuple accesses are sequential, but the index accesses and the inner tuple acccesses look
random from the operating system’s perspective. In thePostgres 20%(80%) benchmark,
20% (80%) of the outer relation tuples have a match in the inner relation. There are 20,000
tuples in the 3.2 MB unindexed outer relation, and 200,000 tuples in the 32 MB indexed
inner relation. The index of the inner relation is 5 MB.

The manually modified version of Postgres issues hints for the first sequential read of
the outer relation before executing the first loop. It also issues hints for all the matching
inner tuples found during the first loop before executing the second loop. Postgres could
be (but was not) manually modified to also provide hints for the second sequential read
of the outer relation. This modification was not performed because it would have required
additional effort without providing much benefit. In particular, since TIP maintains a single,
ordered hint queue for each process, it would have required keeping track of the interleaving
between reads of the outer relation and reads of matching inner tuples. This additional effort
would not have provided much benefit since operating system sequential file readahead
should automate prefetching of the outer relation. Postgres could also be (but was not)
manually modified to provide hints for accesses to the index. This modification was not
performed because the structure of the code makes it difficult to achieve (the index is a B-
tree and an index lookup is a single recursive call). Finally, manually modifying Postgres
is complicated by the fact that it maintains its own 100 block cache. Since some accesses
to the inner relation can and do hit in this cache, in order to avoid TIP’s hint queue head-
of-line blocking behavior (described in Section 2.2.3.1), the manually modified Postgres
needs to (and does) issue a hint cancellation call whenever such a cache hit occurs.

7.3.5 Sphinx

The Sphinxbenchmark uses a modification of version 8 of the Sphinx application [30].
Sphinx is a speaker-independent, continuous-voice speech recognition system developed
at Carnegie Mellon University (CMU). The performance of the CMU application degrades
drastically when there is insufficient main memory for it to execute mostly in-core. The ver-
sion used as the original in the benchmark was modified to load language model data from
disk as needed. This enabled it to run almost as quickly, with the same data, on a machine
with much less memory [43, 41]. The benchmark is to recognize an 18-second recording
commonly used in Sphinx regression testing. There are two phases to the execution: an
initialization phase and a recognition phase. In terms of data requests, it sequentially reads
the phone, distribution map, dictionary, and senone probability distribution files entirely, as

7.4. SUMMARY 123

well as reading part of the language model file. During the recognition phase, it performs
several pruning passes during which it requests data as necessary from the language model
file, which mostly consists of a table of conditional probabilities of word-pairs and word-
triples. From the operating system’s perspective, these accesses look random. The four
sequentially read files total about 15 MB, while the language model file is almost 176 MB.

The manually modified version of Sphinx hints accesses to the table of conditional
probabilities in the language model file, but the timing of these hints is limited by the fact
that the recording is broken into 10 ms acoustical frames and recognition proceeds on a
frame-by-frame basis (i.e. the results of the last frame determine the requests that will
be issued on behalf of the next frame). Like Postgres, Sphinx maintains its own cache. To
avoid the hint queue head-of-line blocking issue, the manually modified Sphinx keeps track
of the hints it issues, checks them against the reads it issues, and cancels hints as necessary.
Manually modifying Sphinx to issue hints involved adding a few support routines and data
structures, and inlining code in nine different procedures, although this was not strictly
necessary in four cases.

7.4 Summary

The SpecHint design assumes operating system support for I/O prefetching. In particular,
it assumes that the operating system will manage memory and I/O resources such that pro-
cesses can issue prefetch calls without worrying about about how to schedule prefetches
such that they will hide disk latency but not hurt memory or I/O performance. This sup-
port simplifies the design by enabling speculating threads to simply issue prefetch calls as
quickly as they can identify what data to prefetch. The SpecHint implementation relies on
the TIP informed prefetching and caching manager, and a prefetch-aware software striper,
to provide this support.

The evaluation uses six benchmarks from the TIP benchmark suite. The benchmark
applications are all real-world I/O-intensive applications, and include a wide variety of ac-
cess patterns and application types. Two versions of each application’s source code were
used to produce the executables used in the evaluation. The original version of the source
code, which does not contain hint calls, was used to produce both the base-line non-hinting
application executable, and the speculating executables. The manual hints application ex-
ecutable was produced using source code that was manually modified to issue prefetching
hints. For many of the benchmark applications, a substantial amount of work involved in
manually modifying the benchmark applications to issue hints.

124 CHAPTER 7. EXPERIMENTAL SETUP

Chapter 8

Evaluation

This chapter presents an evaluation of the SpecHint design and implementation. The evalu-
ation has three main directives: 1) it demonstrates how successfully this implementation of
the speculative execution approach achieves its overall goal of reducing application elapsed
times; 2) it investigates what limits SpecHint’s ability to be more effective; and 3) it ex-
amines the performance impact of key elements of the SpecHint design, validating perfor-
mance claims made in earlier chapters and demonstrating the strengths and weaknesses of
this design.

In order to demonstrate the potential of the SpecHint design and implementation, the
chapter begins by examining the performance of speculating applications in tests during
which the tested application is the only application executing on the testbed. First, Sec-
tion 8.1 extensively examines the performance of my implementation of the SpecHint de-
sign, which I refer to asnaive SpecHint. Next, Section 8.2 examines the cost and benefit of
several optional mechanisms in the SpecHint implementation that attempt to improve the
effectiveness of speculative execution. Section 8.3 then projects how the trends in proces-
sor and disk speeds will affect the benefit that this approach will be able to deliver in the
future.

Since speculative execution is mostly confined to consuming spare processing cycles,
one question with this approach is whether it can still provide benefit when there is con-
tention for the processor. To answer this question, Section 8.4 analyzes performance when
multiple applications are executed concurrently.

Finally, the SpecHint design requires that applications undergo a binary transformation
step (described in Section 7.2) before they can benefit from the speculative execution ap-
proach. Section 8.5 presents the cost of this transformation step in order to demonstrate
that it is not prohibitively large.

8.1 Single application, naive SpecHint

To evaluate the performance of the SpecHint design, I compare the performance ofnaive
SpecHint executables(executables produced using the SpecHint tool, according to the

125

126 CHAPTER 8. EVALUATION

SpecHint design) to the performance of bothoriginal, non-hinting executables(produced
directly from each benchmark application’s original source code) andmanual hinting exe-
cutables(produced from source code that was manually modified to include TIP hint calls).
Comparing against original, non-hinting executables reveals the performance benefit that
naive SpecHint provides automatically. Comparing against manual hinting executables es-
sentially reveals how close naive SpecHint’s performance is to the optimal performance that
could be obtained through application-level I/O prefetching. I begin by discussing overall
results. Subsequent sections examine the behavior of naive SpecHint in greater detail.

8.1.1 Overall performance

Figure 8.1 shows the elapsed times of naive SpecHint executables and manual hinting ex-
ecutables relative to original, non-hinting executables. These graphs show that performing
speculative execution can substantially reduce the elapsed times of all but one of the bench-
marks (Sphinx), especially when the data is spread across multiple disks.

The graphs also show that the performance of the naive SpecHint executable is compa-
rable to the performance of the manual hinting executable for two of the six benchmarks,
Agrep and XDataSlice. The main reason that SpecHint delivers near-optimal performance
for these benchmarks is that, during these benchmarks only, the data unavailable during
speculative execution seldom if ever impedes speculative execution’s ability to identify
future data requests. The benchmark-specific dependencies of speculative execution on un-
available data values turn out to be the main determinant of the performance of speculative
execution for a benchmark. Later sections show that the speed at which speculative execu-
tion is able to identify future data requests is also a concern for some of the benchmarks.

The geometric mean elapsed time of the naive SpecHint executables, as a fraction of
the elapsed time of the original, non-hinting executables, is 0.91, 0.68, and 0.55 for 1, 2,
and 4 disks, respectively. The geometric mean elapsed time of the manual hinting exe-
cutables, as a fraction of the elapsed time of the original non-hinting executables, is 0.79,
0.53 and 0.39 for 1, 2 and 4 disks, respectively. That is, both speculating and manual hint-
ing executables provide much less benefit when the data is spread over fewer disks, but
manual hinting executables are less sensitive than speculating executables to a lack of I/O
parallelism. The former is not surprising since fewer disks means less I/O bandwidth, and
prefetching requires spare I/O bandwidth to improve performance. The latter is primarily
because speculating executables are often unable to issue hints as early as manual hint-
ing executables, and issuing hints later is more likely to hide less I/O latency on a system
with less spare I/O bandwidth. In particular, multiple disks enable prefetching to be over-
lapped with servicing of demand requests so that, to hide the same amount of disk latency,
prefetches can be issued much later on a multi-disk system than they would need to be is-
sued on a single disk system. A secondary reason is that speculating executables are more
likely to issue incorrect hints, and a useless prefetch issued as the result of an incorrect hint
is more likely to hurt performance on a system will less spare I/O bandwidth. In partic-
ular, on a system with more spare I/O bandwidth, prefetches are more likely to consume

8.1. SINGLE APPLICATION, NAIVE SPECHINT 127

Agrep XDataSlice Gnuld P 80% P 20% Sphinx
0

10

20

30

40

50

60

70

80

90

100

E
la

ps
ed

 ti
m

e
/ E

la
ps

ed
 ti

m
e

of
 o

rig
in

al
 a

pp
lic

at
io

n
(%

)

SpecHint, naive
Manual hints

1 Disk

Agrep XDataSlice Gnuld P 80% P 20% Sphinx
0

10

20

30

40

50

60

70

80

90

100

E
la

ps
ed

 ti
m

e
/ E

la
ps

ed
 ti

m
e

of
 o

rig
in

al
 a

pp
lic

at
io

n
(%

)

SpecHint, naive
Manual hints

2 Disks

Agrep XDataSlice Gnuld P 80% P 20% Sphinx
0

10

20

30

40

50

60

70

80

90

100

E
la

ps
ed

 ti
m

e
/ E

la
ps

ed
 ti

m
e

of
 o

rig
in

al
 a

pp
lic

at
io

n
(%

)

SpecHint, naive
Manual hints

4 Disks

Figure 8.1: For each of the benchmarks summarized in Table 7.1, these graphs show the elapsed
time of the naive SpecHint executable (the executable produced using my implementation of the
SpecHint design) and the manual hinting executable (the executable produced from source code
manually modified to include prefetch hint calls) relative to the original, non-hinting executable
when the file system is striped across one, two, or four disks.

bandwidth that would otherwise have been unused, so useless prefetches are less likely to
inadvertently delay demand fetches.

Table 8.1 gives the raw numbers used to generate the geometric means and the graphs
of Figure 8.1. The percentage of an original executable’s elapsed time during which the
original executable is stalled on I/O places an upper limit on the maximum benefit that can
be obtained by hiding I/O latency (e.g. via prefetching). The original executables for all
of the benchmarks except Sphinx spend at least 70% of their elapsed times stalled on I/O.
Sphinx spends less than 40% of its time stalled on I/O. Notice that the original, non-hinting
executables derive little if any benefit from multiple disks. This is because they are single-
threaded and issue synchronous data requests, and therefore have at most one I/O request

128 CHAPTER 8. EVALUATION

Benchmark Version 1 Disk 2 Disks 4 Disks
Elapsed Idle Elapsed Idle Elapsed Idle

Agrep Original 23.4 21.3 23.6 21.5 21.1 19.0
(0.80) (0.80) (1.10) (1.10) (0.70) (0.60)

Naive 18.6 0.5 10.8 0.4 6.7 0.5
(0.00) (0.00) (0.50) (0.00) (0.40) (0.20)

Manual 17.6 15.6 10.0 8.0 6.1 4.1
(0.00) (0.00) (0.40) (0.40) (0.30) (0.30)

XDataSlice Original 301.4 261.0 303.5 263.9 332.4 292.1
(0.30) (0.50) (2.30) (2.20) (2.30) (2.10)

Naive 226.7 2.2 141.7 2.0 97.2 2.0
(0.20) (0.10) (0.50) (0.20) (0.60) (0.20)

Manual 225.6 194.5 141.5 110.6 96.9 65.9
(0.30) (0.30) (1.00) (1.20) (0.30) (0.30)

Gnuld Original 97.0 86.7 104.9 95.0 109.4 99.4
(1.20) (0.90) (0.40) (0.30) (0.70) (0.50)

Naive 91.9 5.7 76.9 5.4 69.5 5.6
(0.90) (0.30) (0.50) (0.30) (0.70) (0.10)

Manual 78.4 68.8 48.5 39.0 35.8 26.3
(0.90) (0.90) (0.70) (0.70) (0.50) (0.40)

Postgres 80% Original 231.4 186.7 224.7 178.7 231.6 185.9
(1.00) (0.90) (3.50) (2.00) (3.50) (2.40)

Naive 212.1 5.1 156.3 3.3 148.5 2.8
(1.30) (0.30) (2.90) (0.30) (1.70) (0.10)

Manual 162.4 117.6 103.4 59.0 76.7 31.5
(6.50) (6.50) (2.30) (2.40) (1.60) (1.50)

Postgres 20% Original 86.5 62.2 84.9 60.2 86.3 61.4
(0.90) (0.30) (1.10) (0.20) (0.90) (0.30)

Naive 86.6 4.0 67.7 2.5 64.8 2.4
(0.50) (0.10) (0.30) (0.10) (0.60) (0.10)

Manual 73.4 48.6 54.2 30.0 44.6 19.9
(0.50) (0.70) (1.30) (0.90) (0.50) (0.40)

Sphinx Original 236.2 84.2 238.9 87.0 229.3 77.2
(1.10) (0.50) (1.70) (0.70) (1.10) (1.00)

Naive 241.8 2.3 238.2 1.7 229.1 1.5
(0.90) (0.10) (1.20) (0.10) (2.40) (0.10)

Manual 223.9 66.5 202.5 46.9 182.0 27.5
(2.60) (0.80) (0.80) (0.30) (0.50) (0.40)

Table 8.1: Raw figures for the elapsed times and idle times of the original, naive SpecHint and
manual hinting executables on one, two, and four disks. All times are given in seconds. The idle
times for the original and manual hinting executables are the amount of time during which these
executables were stalled on I/O. The idle times for the naive SpecHint executables are the time
during which both the original thread and the speculating thread were blocked (e.g. while the
original thread is blocked on a read call and the speculating thread is blocked on a page fault). The
figures in parenthesis give the size of the 95% confidence intervals.

8.1. SINGLE APPLICATION, NAIVE SPECHINT 129

outstanding at any time. Furthermore, they tend to issue requests of such modest sizes that
the requested data resides on a single disk.

8.1.2 Hinting performance

The sole purpose of performing speculative execution is to generate correct hints for the
future data needs of the target normal execution. To evaluate the hinting performance of
the SpecHint design, this section compares the ability of naive SpecHint executables to
generate hints with that of the manual hinting executables.

Table 8.2 shows the number of read calls issued by each benchmark, and the percentage
of these read calls, and the blocks specified by these read calls, which were correctly hinted
by the naive SpecHint and manual hinting executables. It also shows the number of incor-
rect hints, and of incorrectly hinted blocks. Only one set of figures is given for the manual
hinting executables because these executables issue the same hints every run, regardless
of system parameters like the number of disks. One, two and four disk figures are given
for the naive SpecHint executables because the hints generated by speculating executables
depend on when and how many spare cycles are available for speculative execution.

In the benchmarks for which the naive SpecHint executables produce the same per-
formance gains as the manual hinting executables – Agrep and XDataSlice – the naive
SpecHint executables are as successful at hinting as the manual hinting executables. For
all the other benchmarks, the naive SpecHint executables generate noticeably fewer correct
hints than the manual hinting executables, and also generate many incorrect hints. This is
not surprising since, for all of the applications except Agrep and XDataSlice, the values that
are unavailable during speculative execution effect whether speculative execution is able to
identify future data requests correctly. The manual hinting executables, on the other hand,
generate incorrect hints only for Postgres. As described in Section 7.3, Postgres maintains
an internal cache and does not issue read calls for data in that cache. Although the man-
ually modified Postgres attempts to avoid issuing hints for data that will be in the internal
cache, it will infrequently issue such a hint. Sphinx also maintains an internal cache, but
the manually modified Sphinx is able to avoid issuing hints for data in that cache.

In general, a prefetching application will spend more time stalled on I/O on a system
with fewer disks because I/O bandwidth will be more limited, so a speculating application
will have more opportunity to produce hints on a system with fewer disks. This effect
can be seen by comparing the total number of hints generated in the one disk and four
disk configurations. The additional hints may not be useful, however; for example, on
a single disk, the naive SpecHint executable mainly produces more incorrect hints for the
Postgres benchmarks. Notice that, somewhat ironically, the more successfully a speculating
application generates hints, the less opportunity it will have to generate more hints, because
normal execution will spend less timed stalled on I/O.

The figures for the number of correctly hinted read calls show that even the manual
hinting executables do not issue hints for all the read calls of every benchmark. In some
cases, this is because it is unnecessary. For example, the Agrep benchmark issues a read

130 CHAPTER 8. EVALUATION

Benchmark Read calls Read call blocks
Agrep 4277 2928
XDataSlice 46356 46352
Gnuld 13037 20091
Postgres 80% 31245 31243
Postgres 20% 8678 8676
Sphinx 65282 77714

Benchmark Version Disks Correctly hinted Incorrectly hinted
Calls Blocks Calls Blocks

Agrep Naive 1 2915 (68%) 2915 (100%) 0 0
Naive 2 2915 (68%) 2915 (100%) 0 0
Naive 4 2910 (68%) 2910 (99%) 0 0
Manual – 2922 (68%) 2922 (100%) 0 0

XDataSlice Naive 1 45241 (98%) 45241 (98%) 0 0
Naive 2 45236 (98%) 45236 (98%) 0 0
Naive 4 45246 (98%) 45246 (98%) 0 0
Manual – 45241 (98%) 45241 (98%) 0 0

Gnuld Naive 1 8215 (63%) 14659 (73%) 2266 2605
Naive 2 8215 (63%) 14634 (73%) 2249 2531
Naive 4 8169 (63%) 14580 (73%) 2233 2346
Manual – 10225 (78%) 17273 (86%) 0 0

Postgres 80% Naive 1 14531 (47%) 14531 (47%) 8813 8813
Naive 2 14697 (47%) 14697 (47%) 4593 4593
Naive 4 14155 (45%) 14155 (45%) 3935 3935
Manual – 16083 (51%) 16083 (51%) 242 242

Postgres 20% Naive 1 3922 (45%) 3922 (45%) 2903 2903
Naive 2 3771 (43%) 3771 (43%) 2386 2386
Naive 4 3604 (42%) 3604 (42%) 2081 2081
Manual – 4384 (51%) 4384 (51%) 71 71

Sphinx Naive 1 10288 (16%) 16006 (21%) 164 256
Naive 2 7310 (11%) 11887 (15%) 1585 2319
Naive 4 2582 (4%) 7205 (9%) 658 713
Manual – 62586 (96%) 74871 (96%) 0 0

Table 8.2: Hinting performance of the naive SpecHint and manual hinting executables. The top
table shows, for each benchmark, the number of read calls, and the number of blocks specified
by these read calls. The bottom table shows how many of these calls (and blocks) were correctly
hinted, as well as the number of incorrect hint calls (and blocks). The hinting performance of the
manual hinting executables does not vary with the number of disks. The original executables are
not included in this table because they do not generate any hints.

8.1. SINGLE APPLICATION, NAIVE SPECHINT 131

call at the end of each of the 1347 data files. Since these end-of-file calls do not fetch any
data, there is no point in issuing a hint for them. Both the naive SpecHint and manually
modified Agrep do not issue hints for end-of-file calls, while issuing hints for almost all
(>99%) of the benchmark’s data-returning calls. As another example, for each data file,
the Gnuld benchmark issues several small read calls in a row to read in fixed-size data
structures at the beginning of the file (the object file headers) which fit in the first block of
the file. The manually modified Gnuld recognizes that it is unnecessary to issue multiple
sequential hints for the same block, so it issues a single hint for the first block of each file.
(The SpecHint implementation does not contain logic to avoid unnecessary hints by detect-
ing sequential accesses to the same block, but the cost of issuing such an unnecessary hint
is negligible.) On the other hand, the manually modified Postgres does not issue hints for
a subset of its read calls because modifying Postgres to issue effective hints for these calls
would be very complicated, requiring many non-localizeable modifications. This provides
an opportunity for SpecHint to improve on the performance of a manual hinting executa-
bles. Unfortunately, speculative execution also has difficulty issuing hints for those read
calls. The situation with Sphinx is similar; the code would need to be restructured substan-
tially to allow more read calls to be hinted effectively.

The difference in the elapsed times of the naive SpecHint and manually modified Gnuld
and Postgres are disproportionately greater than the difference in the percentage of correctly
hinted read calls. This is because the performance effect of a correct hint depends on how
early it is generated. If a hint is not generated early enough, it will probably provide no per-
formance benefit even if correct. Therefore, to understand the performance of the SpecHint
design, it is also necessary to consider the prefetching performance of the executables.

8.1.3 Prefetching performance

The main benefit of the hints generated during speculative execution is that they can lead to
more accurate prefetching than the operating system’s readahead policy. (Hints may also
improve file cache performance by causing hinted data to be kept in the cache when it would
ordinarily be ejected by the cache’s LRU replacement policy.) This section examines the
prefetching performance of the SpecHint design by comparing the prefetching behavior of
naive SpecHint executables with the prefetching behavior of both the original, non-hinting
executables and the manual hinting executables.

Tables 8.3 and 8.4 show the number of prefetch I/Os, and the number of prefetched
blocks which were fully prefetched before being requested during normal execution, only
partially prefetched before being requested during normal execution, or prefetched use-
lessly (i.e. ejected from the cache without ever being used). The sum of the fully and
partially prefetched blocks is the number of usefully prefetched blocks. For the original,
non-hinting executables, prefetches occur only as a result of the system’s automatic reada-
head policy. For the hinting executables, prefetches occur as a result of both the readahead
policy and hint-guided prefetching. Therefore, even if a hinting executable issues no in-
correct hints, it may accrue some incorrectly prefetched blocks. Since hinted reads do not

132 CHAPTER 8. EVALUATION

1 Disk
Benchmark Version Prefetch Blocks prefetched

I/Os Fully + Partially = Usefully Uselessly
Agrep Original 526 506 502 1009 3 (< 1%)

Naive 1746 2539 453 2992 16 (< 1%)
Manual 1664 2507 423 2931 2 (< 1%)

XDataSlice Original 22721 12649 12744 25394 35260 (58%)
Naive 16148 32174 12900 45075 68 (< 1%)
Manual 14945 33054 11820 44874 15 (< 1%)

Gnuld Original 2611 2467 2091 4559 1155 (20%)
Naive 5318 2294 6772 9067 537 (6%)
Manual 4128 8129 1977 10107 7 (< 1%)

Postgres 80% Original 247 710 93 804 349 (30%)
Naive 13481 8443 4217 12660 1485 (11%)
Manual 8991 12285 824 13109 1651 (11%)

Postgres 20% Original 208 901 65 967 96 (9%)
Naive 4161 2553 1692 4246 710 (14%)
Manual 3303 4269 286 4556 272 (6%)

Sphinx Original 4515 14881 3204 18085 3448 (16%)
Naive 7649 10282 10541 20823 1521 (7%)
Manual 6626 18462 8271 26734 115 (< 1%)

Table 8.3: Prefetching performance of the original, naive SpecHint, and manually modified appli-
cations on one disk. All applications experience automatic prefetching in the form of readahead.
The hinting applications also experience hint-driven prefetching.Fully is the number of prefetched
blocks that were fully prefetched before being requested by normal execution.Partially is the num-
ber of prefetched blocks that were only partially prefetched before being requested by normal exe-
cution. Usefully is the sum ofFully andPartially. Finally, Uselesslyis the number and percentage
of prefetched blocks that were not used before being ejected from the cache.

trigger the readahead policy, a successfully hinting executable can avoid much unneces-
sary readahead. Results are shown for both the one and four disk configurations because
prefetching performance is highly dependent on the available I/O bandwidth,

Whenever normal execution requests a blocks that has only been partially prefetched,
it will experience less I/O latency than if no prefetch had been initiated, but will still need
to stall until the fetch completes. Therefore, the difference in the number of blocks fully
prefetched by the naive SpecHint and manual hinting executables show how often specu-
lative execution was not able to generate hints early enough to hide the same amount of
I/O latency as the manual hinting executables. As expected given the overall results, the
number of blocks fully prefetched for Agrep and XDataSlice is essentially the same for the
naive SpecHint and manual hinting executables. For the other benchmarks, even when the
naive SpecHint executable correctly prefetches a similar number of blocks as the manual
hinting executable, the number of blocks it is able to prefetch fully is substantially less than

8.1. SINGLE APPLICATION, NAIVE SPECHINT 133

4 Disks
Benchmark Version Prefetch Blocks prefetched

I/Os Fully + Partially = Usefully Uselessly
Agrep Original 533 542 482 1024 3 (< 1%)

Naive 1759 2791 198 2989 16 (< 1%)
Manual 1647 2754 176 2931 2 (< 1%)

XDataSlice Original 22712 12753 12656 25410 35189 (58%)
Naive 16159 40337 4776 45114 84 (< 1%)
Manual 14941 40427 4421 44849 12 (< 1%)

Gnuld Original 2656 2491 2054 4545 1181 (21%)
Naive 5285 3739 5176 8915 442 (5%)
Manual 4157 8922 1020 9942 7 (< 1%)

Postgres 80% Original 238 700 85 786 346 (31%)
Naive 12081 3614 8090 11704 1075 (8%)
Manual 8747 12554 373 12927 1690 (12%)

Postgres 20% Original 210 950 68 1018 78 (7%)
Naive 3800 1742 2314 4056 592 (13%)
Manual 3253 4424 192 4616 246 (5%)

Sphinx Original 4422 15893 2073 17967 3287 (15%)
Naive 5778 14247 6256 20503 1761 (8%)
Manual 6440 22510 4062 26572 106 (< 1%)

Table 8.4: Prefetching performance of the original, naive SpecHint, and manually modified appli-
cations on four disks.

the number of blocks that the manual hinting executable is able to prefetch fully. Therefore,
these figures reveal that one of the main reason for the performance difference between the
naive SpecHint and manual hinting executables is that the naive SpecHint executables often
fail to issue hints early enough to receive the same benefit from prefetching.

Looking at the prefetching performance of the original, non-hinting executables reveals
the performance of the operating system’s readahead policy. For Agrep, readahead is not
effective because, although each data file is read sequentially, most of the files are too small
to benefit from readahead. Readahead is not triggered until two sequential reads have oc-
curred, but (as shown in Figure 7.2) 80% of Agrep’s data files fit in one or two blocks.
For XDataSlice, readahead actually hurts performance because the strided access pattern
generally reads enough data sequentially to trigger bandwidth-consuming readahead, but
then strides to a different location in the data file. Notice that, even if an operating system
were modified such that it could detect strided accesses, it would have a hard time au-
tomating prefetching for XDataSlice’s strided accesses since, as explained in Section 7.3,
XDataSlice’s striding pattern cannot be expressed with a single stride. For Gnuld and the
Postgres benchmarks, readahead is neither particularly helpful nor harmful. Finally, reada-
head is very helpful for Sphinx since most of the read calls in the Sphinx benchmark are
sequential reads of initialization files, as described in Section 7.3.

134 CHAPTER 8. EVALUATION

The hinting executables are able to improve the prefetching performance of Agrep by
issuing hints across files. They improve the performance of XDataSlice both by issuing
hints for the correct accesses, and by stopping unnecessary readahead. For Gnuld, Postgres
and Sphinx, they issue hints for accesses that look random from the perspective of the
operating system. The manually modified Sphinx issues hints for the sequential reads even
though its performance would not change if it did not issue those hints. The speculating
Sphinx actually fully prefetchesfewerblocks than the original, non-hinting Sphinx because
it issues hints for some, but not all, of these sequential reads. Since hinted reads do not
trigger readahead, the data for sequential reads after these hinted reads are not prefetched
by readahead. This explains why speculating Sphinx is as or less effective at prefetching
than the original, non-hinting Sphinx.

Comparing the prefetching performance of the one and four disk configurations reveals
the performance advantage of multiple disks. For both the naive SpecHint and manual hint-
ing executables, the number of blocks that can be prefetched fully generally increases with
the number of disks because the system is able to exploit more I/O parallelism to service
prefetches at a higher rate. The speculating Postgres benchmarks are an exception. In-
creasing the rate at which prefetches are serviced can reduce the I/O stall time experienced
by the original thread, causing the speculating thread to have less opportunity to speculate.
For the Postgres benchmarks, this causes the speculating thread to issue many hints much
later on four disks than on a single disk. Finally, as expected given the relative overall
performance of the naive SpecHint and manual hinting executables for one and four disks,
the prefetching performance of the naive SpecHint executables tends to be more sensitive
to fewer disks. This is consistent with the fact that the naive SpecHint executables are not
able to generate hints as early as the manual hinting executables, and are therefore more
sensitive to limited I/O bandwidth.

Clustering multiple contiguous accesses reduces the processing overhead of issuing
those accesses and improves disk throughput. As mentioned earlier, the operating system
automatically clusters readahead requests, and TIP automatically clusters hinted prefetches.
The more hints are outstanding at any time, the more likely there will be hints that TIP can
cluster. The number of prefetch I/Os shows that the manual hinting executables are much
more successful at issuing hints early enough to benefit from clustering; in many cases,
the manual hinting executables correctly prefetch more blocks than the naive SpecHint
executables while issuing fewer I/O requests. Notice that prefetches for the original, non-
hinting Sphinx are clustered more successfully than for the speculating Sphinx since, as
discussed in a prior paragraph, the hints issued by the speculating Sphinx disrupt clusterable
readahead.

Finally, notice that the number of correctly and incorrectly hinted blocks is not neces-
sarily indicative of the number of correctly and incorrectly prefetched blocks. There are
two main reasons for this. First, hints will only trigger prefetches if the hinted data is not
already cached. Therefore, for example, even though the speculating Postgres 80% issues
many more incorrect hints in the one disk case, it does not incorrectly prefetch nearly as
many additional blocks because most of these incorrect hints specify cached data. Second,

8.1. SINGLE APPLICATION, NAIVE SPECHINT 135

1 Disk
Benchmark Version Block Page Block Unprefetched Unprefetched

requests faults reuses misses miss I/Os
Agrep Original 3059 135 108 1941 1932

Naive 3503 578 449 61 37
Manual 3072 148 118 22 11

XDataSlice Original 48710 2349 3136 20179 20101
Naive 49293 2935 3852 366 221
Manual 48554 2196 3489 190 138

Gnuld Original 22981 554 11523 6898 5110
Naive 24151 1689 12799 2284 1809
Manual 22986 559 12609 269 249

Postgres 80% Original 33776 2513 20465 12507 12415
Naive 36828 4252 22879 1288 1098
Manual 33810 2540 19433 1267 1174

Postgres 20% Original 10727 2030 5601 4158 4088
Naive 12573 3620 7211 1115 951
Manual 10765 2061 5193 1015 946

Sphinx Original 79136 1402 51259 9791 4540
Naive 80174 2394 51868 7482 4145
Manual 78972 1471 51838 399 315

Table 8.5: Cache performance of the original, naive SpecHint, and manually modified applications
on one disk.Block requestsis the total number of blocks requests to the cache, not including requests
for empty blocks.Page faultsis the number of block requests for mapped blocks.Block reusesis
the number of block requests for blocks in the cache that have already been used at least once, and
Unprefetched missesis the number block requests for blocks not already in the cache and not in the
process of being prefetched.Unprefetched miss I/Osis the number of I/Os issued to obtain these
blocks. The total number of read I/Os can be calculated asUnprefetched miss I/Os+ Prefetch I/Os
(where the latter term can be found in Table 8.3).

non-hinted accesses still trigger the operating system’s automatic readahead policy. There-
fore, for example, even though the speculating Sphinx issues many more correct hints on
a single disk, the number of correctly prefetched blocks is about the same regardless of
the number of disks. This occurs because the additional hints are for blocks which, if not
hinted, would still be prefetched by the automatic readahead policy.

8.1.4 Caching performance

The SpecHint design will cause an increase in memory pressure, which could lead to more
page faults. Also, uselessly prefetched blocks could cause data to be ejected from the cache
prematurely, so that additional I/Os are necessary to refetch the ejected data. Therefore, to
understand the I/O stalls experienced by an execution, it is necessary to look at not only

136 CHAPTER 8. EVALUATION

4 Disks
Benchmark Version Block Page Block Unprefetched Unprefetched

requests faults reuses misses miss I/Os
Agrep Original 3059 135 108 1926 1917

Naive 3503 578 449 64 40
Manual 3072 148 118 23 11

XDataSlice Original 48671 2313 3097 20164 20097
Naive 49250 2885 3755 380 228
Manual 48521 2162 3473 197 136

Gnuld Original 22998 571 11520 6932 5128
Naive 24145 1684 12789 2441 1919
Manual 22986 559 12744 299 284

Postgres 80% Original 33751 2489 20291 12674 12566
Naive 36077 4205 22191 2181 2014
Manual 33844 2573 19636 1279 1174

Postgres 20% Original 10876 2040 5680 4177 4098
Naive 12599 3581 7159 1383 1253
Manual 10927 2076 5307 1003 927

Sphinx Original 79127 1393 51372 9787 4520
Naive 80213 2459 52042 7667 3976
Manual 78992 1491 52017 402 309

Table 8.6: Cache performance of the original, naive SpecHint, and manually modified applications
on four disks.

on its prefetching performance, but also its caching performance. This section examines
the caching performance of the SpecHint design by comparing the caching performance of
naive SpecHint executables against that of both the original, non-hinting executables and
the manual hinting executables.

Tables 8.5 and 8.6 show the total number of requests for non-empty cache blocks (Block
requests), and the number of such requests for mapped blocks (Page faults). It also shows
the number of such requests for blocks in the cache that have already been accessed (Block
reuses), the number of such requests for blocks both not in the cache and not in the process
of being prefetched (Unprefetched misses), and the number of I/Os issued to obtain these
unprefetched missing blocks (Unprefetched miss I/Os). The last two differ because requests
for multiple blocks are sometimes coalesced into a single I/O. The I/O stall experienced by
an execution will be the remaining I/O latency for accesses to partially prefetched blocks,
plus the full I/O latency for theUnprefetched misses. Figures are given for the one and four
disk cases, corresponding to the prefetching results in Tables 8.3 and 8.4.

As expected given the addition of shadow code and data structures to support specu-
lative execution, the number of page faults and the total number of block requests to the
file cache is higher for the naive SpecHint executables. This increase is matched or at
least offset, however, by an increase in the number of block reuses. The increase in the

8.1. SINGLE APPLICATION, NAIVE SPECHINT 137

4 Disks
Benchmark Version User System Soft page Hard page Memory

time (s) time (s) faults faults footprint (KB)
Agrep Original 0.4 1.4 39 4 160

Naive 0.4 1.2 100 20 928
XDataSlice Original 8.1 26.4 8106 58 63496

Naive 8.0 18.7 8110 60 65648
Gnuld Original 3.5 5.3 1343 11 10376

Naive 4.3 4.2 1680 30 15464
Postgres 80% Original 31.7 12.6 466 78 2376

Naive 31.4 10.2 500 82 5320
Postgres 20% Original 19.7 3.9 435 56 2472

Naive 20.6 3.3 474 73 5408
Sphinx Original 136.7 12.7 11203 81 82960

Naive 140.2 12.8 11063 87 86472

Table 8.7: Processor and memory performance of the original, non-hinting applications and normal
execution in the naive SpecHint applications on four disks. Except forMemory footprint, all fig-
ures for naive SpecHint applications capture the performance of only the original thread.Memory
footprint is the maximum amount of memory resident for the application at any time during its ex-
ecution. Soft page faultsrequire operating system intervention, but no I/O, whilehard page faults
require I/O.

number of block reuses also indicates that, while useless prefetches by the naive SpecHint
executables may sometimes hurt cache performance, this effect is not large. Notice that,
in all cases, the naive SpecHint executables experience fewer unprefetched misses than the
original executables (and more than the manual hinting executables).

8.1.5 Overhead to normal execution

One of the three design goals was to avoid hurting application performance. This goal
affected many elements of the SpecHint design. For example, the minimal scheduling pri-
ority of the speculating thread and the reliance on TIP’s cost-benefit management of cache
resources attempt to prevent speculative execution from hurting application performance.
Other elements of the design, like the creation of shadow code and the resynchroniza-
tion policy and mechanism, attempt to avoid hurting the performance of normal execution.
The previous section demonstrated that the cache replacement performance of the naive
SpecHint executables is similar to the cache replacement performance of the original ex-
ecutables. This section examines the amount of work that the SpecHint design adds to
normal execution by comparing the processor and memory performance of the original
thread in naive SpecHint executables to that of the original, non-hinting executables.

Table 8.7 shows processor times, number of page faults, and the maximum memory
footprint. Except for the maximum memory footprint figures, the figures for the naive

138 CHAPTER 8. EVALUATION

SpecHint executables reflect the performance of only the original thread, so they can be
used to determine the overhead incurred by the target normal execution (which is the only
normal execution in these single application tests). Figures are given for the four disk case
only; since these factors are independent of the amount of available I/O bandwidth, the
results are similar for other numbers of disks.

The SpecHint design increases the user time of normal execution by requiring the orig-
inal thread to execute additional code to support speculative execution (as discussed in
Section 6.3.2). Looking at the user times figures, we see that, as intended, the user time
of normal execution increases by at most a negligible amount when compared with the
elapsed times of executing these benchmarks. The SpecHint design increases the system
time of normal execution by the processing cost of servicing additional soft and hard page
faults. However, it can also decrease the system time of normal execution by allowing the
speculating thread to pay the processing cost of issuing I/Os by issuing correct prefetches.
Looking at the system time figures, we see that this decrease outweighs any increase due to
additional page faults in all the benchmarks except Sphinx (for which there is a insignificant
increase). Sphinx is an exception because, as already discussed, the speculating Sphinx is
not very successful at generating correct prefetches.

As indicated by the larger memory footprints, the naive SpecHint executables increase
memory pressure substantially. This is not surprising given that the speculating thread ac-
cesses a different set of code pages and several fairly large speculative execution support
data structures, performs copy-on-write, and dynamically allocates memory while specu-
lating. This table shows how the increase in memory pressure leads to a substantial increase
in the number of page faults experienced by the original thread. Most of the increase, how-
ever, is in soft page faults, which require operating system intervention but no additional
I/O. The increase in the number of hard page faults (which require I/O) is much smaller, but
still substantial in several cases. Notice that it is conceivable that SpecHint could instead
decrease the number of page faults experienced during normal execution. In particular, as
the speculating thread executes, it could fault in the data structures that will be accessed
during subsequent normal execution. With these benchmarks and the current implementa-
tion, however, such an effect is not apparent.

To determine the source of the additional page faults, I conducted tests in which the
speculating thread exits immediately. Comparing the number of page faults generated dur-
ing these tests against the numbers shown above revealed that, while the increase in soft
page faults is mainly the result of speculative execution increasing memory pressure, the
increase in hard page faults is independent of actually performing speculative execution.
Instead, it is an artifact of my implementation. Specifically, for ease of implementation, my
research implementation intersperses additional data with the original data, so the original
data is spread over more pages. It is actually a safety violation for the implementation to
relocate the original data because the original code needs to be updated to reflect changes
in data addresses. A non-research implement should instead place all the additional data in
a separate location. This should not present any technical difficulties and would not only
satisfy the safety goals, but should also decrease or even eliminate additional hard page

8.1. SINGLE APPLICATION, NAIVE SPECHINT 139

4 Disks
Benchmark Median Copies Resynchronizations Soft Hard Signals

measured per Number Ave time faults faults
dilation resynch (us)

Agrep 9.1 1 4 219 59 2 0
XDataSlice 2.8 26 68 142 346 34 4
Gnuld 2.0 14 1697 68 627 23 253
Postgres 80% 8.0 50 2082 142 450 44 0
Postgres 20% 5.8 46 1114 157 434 37 1
Sphinx 5.1 25 3938 186 833 31 139

Table 8.8: Performance characteristics of speculative execution on four disks. The dilation factor
is the ratio between the speed of speculative execution and normal execution. The process used to
calculate themedian measured dilationfactor is described in the text.Copies per resynchis the
average number of software copy-on-write region copies performed per resynchronization, with a
region size of 1KB.Resynchronizationsgives the number of resynchronizations performed by the
speculating thread, and the average time to perform a single resynchronization.Soft faults, hard
faultsandsignalsare the number of soft page faults, hard page faults, and signals generated by the
speculating thread. The original, non-hinting applications (and, therefore, the original thread in the
speculating applications) generate no signals.

faults experienced during normal execution.

8.1.6 Performance of speculative execution

This section examines the behavior of the speculating thread in order to provide more in-
sight into what occurs during speculative execution. This includes an evaluation of the cost
of the safety mechanisms in the SpecHint design, as well as the behavior of the resynchro-
nization policy and mechanism.

Thedilation factor is the ratio between the speed of speculative execution and normal
execution. As such, it is useful because it captures the processing cost of work added to
speculative execution. This work mostly consists of software copy-on-write checks, but
also includes any actual software copy-on-write copying, stack pointer checks, target ad-
dress checks, and executions of the support routines for the speculating thread. To measure
the dilation factor, a statistics-gathering version of each naive SpecHint executable logged
the time that the speculating thread spent between each pair of consecutive hint calls be-
tween which no reynchronization occurred, and which were both correct. It also logged
the time that the original thread spent between each corresponding pair of consecutive read
calls. The median measured dilation factor is then calculated as the median of these ratios
for each benchmark. Medians are given rather than averages because a few very large inter-
hint times and inter-hint-time to inter-read-time ratios were recorded. These abnormally
large values skew the averages. Notice that the calculation of the median measured dilation

140 CHAPTER 8. EVALUATION

factor does not include the dilation factor during inter-read code that prevents the current
speculation from generating correct hints for future read requests (either because the code
is expensive, or because it contains dependencies on data unavailable during speculative
execution). Therefore, the median measured dilation factor is known to be accurate only
for Agrep and XDataSlice. For the other benchmarks, the true dilation factor is probably
higher by a benchmark-dependent amount.

Table 8.8 shows the median measured dilation factor for each benchmark. The figures in
the table indicate that, as expected, the processor cost of performing software copy-on-write
checks is substantial in all cases. It should be possible to reduce the dilation factors in a
more optimized implementation of the SpecHint design by performing static optimizations
during the binary modification process to reduce the number of software copy-on-write
checks that will be executed, or reduce the cost of the check that must be performed. For
example, loop blocking (a well-known loop transformation) could be applied to loops that
contain a memory instruction whose address is incremented by a constant factor each iter-
ation such that a copy-on-write check would only be performed for that instruction on the
first iteration, and whenever the incrementing causes the address to cross a region boundary.

To reveal the cost of software copy-on-write copying and resynchronization, the table
also shows the average number of software copy-on-write memory regions that the specu-
lating thread copies per resynchronization, the number of times it resynchronizes, and the
average amount of time it takes to perform a resynchronization. Since it takes less than 3 us
to copy a 1KB region on my testbed, the average number of copies per resynchronization
indicate that the processing cost of actually copying memory regions is very small. The
figures also show that the average time for a single resynchronization is very small for all
the benchmarks. This demonstrates one of the claims that underly the SpecHint design:
that using threads to implement speculative execution would allow fast resynchronization.
The resynchronization time varies by a factor of three across the benchmarks because it
depends on the size of the original thread’s stack at the time of resynchronization (since the
speculating thread makes a copy of the original thread’s stack) and the dynamic memory
allocations of the speculating thread (since the speculating thread cleans up its dynamic
memory allocation state during each resynchronization).

Relative to the number of read calls (which is an upper bound on the number of resyn-
chronizations), the number of resynchronizations is much lower for Agrep and XDataSlice
than for any of the other benchmarks. This makes sense because speculative execution is
so successful at generating correct hints for Agrep and XDataSlice, and resynchronization
only occurs when speculative execution falls behind normal execution, or strays from the
correct execution path. Notice that no conclusions can be drawn by comparing the figures
in the table for measured dilation factors and average number of regions copied per resyn-
chronization – in fact, the results of such a comparison seem counter-intuitive – because,
as explained in a prior paragraph, the dilation factor figures are not representative of all of
the speculative execution that occurs.

The copy-on-write region size used to obtain all the results shown in this dissertation
was 1KB. One potential advantage of the software copy-on-write mechanism is that it al-

8.2. SINGLE APPLICATION, IMPROVING SPECHINT EFFECTIVENESS 141

lows a copy-on-write region size different from the operating system’s page size. To ex-
amine whether this added flexibility is truly an advantage, I conducted experiments with
other region sizes. Logically, a larger region size will probably result in more unnecessary
copying of data that is not updated, but in the same region as some data that is updated. A
smaller region size, on the other hand, will increase the number of region identifiers. For
some implementations, this could greatly increase the amount of memory needed to imple-
ment software copy-on-write. In my implementation, it could hurt the caching performance
of a small (3-entry) copy-on-write checking cache I use to speed consecutive checks for ad-
dresses in the same regions. Results for the experiments I conducted with other region sizes
are not shown, but the basic findings were that performance is not particularly sensitive to
the copy-on-write region size for powers of 2 between 512B and 4KB, and only slightly
degrades with a region size of 128B or 8KB. Since most systems use a page size of either
4KB or 8 KB, this indicates that relying on standard operating system/hardware copy-on-
write in, for example, an in-kernel implementation (as sketched in Section 3.2.2) would not
be a performance problem.

Finally, the table shows the number of page faults and signals generated by the spec-
ulating thread. The speculating thread experiences a substantial number of both soft and
hard page faults to access its code and data. The speculating thread also generates signals in
many of the benchmarks. This is not surprising since the speculating thread sometimes uses
incorrect data values. The speculating thread generates SIGFPE signals during XDataSlice
by attempting to divide by zero, and generates SIGSEGV signals during Gnuld, Postgres
and Sphinx by attempting to load from inaccessible memory addresses.

8.2 Single application, improving SpecHint effectiveness

As previously discussed, there are two fundamental reasons that generating prefetches au-
tomatically through speculative execution may be less effective than manually modifying
applications to generate prefetches. First, speculative execution can be misled by stale data
values (e.g. in read buffers of incomplete read calls) such that it may not be able to gener-
ate as many correct hints and may generate incorrect hints that hurt performance. Second,
speculative execution requires spare processing and memory resources. When there are
insufficient spare processing cycles, it may not be able to generate as many correct hints,
or may not generate correct hints early enough to hide the same amount of I/O latency.
When there is inadequate memory, it may inadvertently cause useful data to be prema-
turely ejected from memory, so that additional I/Os are required to refetch such ejected
data.

This section examines the impact, in single application tests, of various mechanisms
that attempt to improve the effectiveness of naive SpecHint. Specifically, the section evalu-
ates mechanisms for decreasing the amount of memory used during speculative execution,
for filtering potential hints based on predictions of how likely they are to be correct, for
attempting to increase the effectivness of stale data values, and for attempting to reduce
the amount of work that speculating threads must perform to generate correct hints. For

142 CHAPTER 8. EVALUATION

each mechanism, it examines the tradeoff between the amount of resources consumed by
the mechanism, and the benefit provided by the mechanism. Notice that, in single appli-
cation tests, it is impossible for these mechanisms to improve the performance of Agrep
or XDataSlice since naive SpecHint already provides near-optimal performance for these
benchmarks. Results for these benchmarks are included in this section only to help evaluate
the cost of supporting the mechanisms.

8.2.1 Minimal updates to execution state

As shown in Table 8.8, software copy-on-write adds a substantial amount of work to spec-
ulative execution. One alternative would be to constrain the updates that speculative execu-
tion is allowed to make to its execution state such that software copy-on-write is no longer
necessary. In particular, I modified the SpecHint tool such that it, while copying the origi-
nal code to begin creating shadow code, the tool removed all store instructions not off the
stack pointer. Store instructions off the stack pointer were allowed in shadow code since,
as discussed in Section 6.3.1.1, stack pointer checks ensure that all such stores executed
would store to the memory allocated to hold the speculating thread’s stack. In addition, the
tool no longer adds load checks before load instructions in shadow code; they are no longer
necessary since no store checks will be executed, so non-shadow data regions will never be
copied (so there will never be copies to which loads should be redirected).

Table 8.9 shows elapsed times relative to original non-hinting executables for binaries
with which speculating threads are allowed to update only register and stack values (Min-
Updates), and the naive SpecHint binaries. The results show that constraining updates in
this fashion is sufficient for Agrep and Gnuld; in fact, slightly larger performance benefits
were obtained for thse benchmarks because the elimination of copy-on-write and store in-
structions increased the speed with which speculative execution could generate hints. On
the other hand, constraining updates eliminated the benefit for Postgres, and incurred a
substantial penalty for XDataSlice. Both of these applications determine their future data
requests by manipulating (i.e. not just loading) data not stored in the stack. The perfor-
mance of XDataSlice degraded substantially because large numbers of incorrect hints were
generated, causing large numbers of incorrect prefetches to be issued, and these prefetches

4 Disks
Elapsed time relative to original non-hinting applications

Agrep XDataSlice Gnuld Postgres Postgres Sphinx
80% 20%

MinUpdates 31% 135% 61% 100% 102% 102%
Naive 32% 29% 64% 64% 75% 100%

Table 8.9: Elapsed time relative to original non-hinting applications.MinUpdatesshows results for
when speculative execution is allowed to update only register and stack values.Naive results are
repeated here to facilitate comparison. Results shown are for the four disk configuration.

8.2. SINGLE APPLICATION, IMPROVING SPECHINT EFFECTIVENESS 143

delayed demand I/Os. These results indicate that, while constraining updates to register
and stack values may be effective for some applications, it reduces the scope of the tool.

8.2.2 Prefetch correctness prediction and filtering

As shown in Table 8.2, the manual hinting executables rarely generate incorrect hints be-
cause a good programmer can usually modify applications such that only correct hints will
be generated. On the other hand, since speculative execution will sometimes use incorrect
data values, speculating executables can generate large numbers of incorrect hints. This is a
problem because incorrect hints can lead to useless prefetches, which can hurt performance
in two ways: 1) by ejecting useful data from memory to make space for the unnecessar-
ily prefetched data, so additional I/Os are necessary to obtain the data required by normal
execution, and 2) by increasing contention for the disk heads such that I/Os for normal
execution are delayed by servicing of useless prefetches.

The hint correctness prediction and filtering mechanism attempts to eliminate the per-
formance loss of speculative execution due to incorrect hints. As described in Sections 5.1.4
and 5.2.2, it consists of a history-based technique for predicting the probability that a po-
tential prefetch will be correct, and a threshhold-based technique for deciding whether to
issue a potential hint with a certain predicted correctness probability. The key assumption
is that the code path executed in order to discover a potential hint will often be correlated
to whether or not the hint will prove to be correct. The implementation evaluated in this
chapter identifies the code path executed in order to discover a potential hint as a simple
function of the current stack pointer and the top 3 return addresses on the filtering return
address stack upon discovering the potential hint.

Table 8.10 shows how adding this mechanism changes the hints issued by the spec-
ulating executables when their data resides on a single disk. The single disk figures are
most relevant because incorrect prefetches are most likely to delay demand requests when
there is only a single disk (and therefore no possibility of servicing multiple I/O requests
in parallel). The table shows that the mechanism succeeds at greatly reducing the number
of incorrect hint calls (and incorrectly hinted blocks). However, the table also shows that
the mechanism slightly but noticeably decreases the number of correctly hinted calls and
blocks for Postgres 20% and Sphinx. This is partially due to the cost of maintaining the
filtering return address stack, which slows speculative execution so that it is sometimes
unable to issue as many hints, but is mainly due to accidentally filtering out an occasional
hint that would have been correct.

While the reduction of incorrect hints looks somewhat promising, the end goal is to
decrease application elapsed times. Figure 8.2 shows how adding the prefetch correctness
prediction and filtering mechanism to naive SpecHint changes elapsed times. In particular,
the Y axes of these graphs give, for each of executable version,V: (TimeNaive - TimeV) /
TimeOriginal, expressed as a percentage.SpecHint, filter overheadexecutables perform all
the work necessary to add this mechanism, but still issue all potential hints.SpecHint, filter
executables actually filter potential hints. Therefore,SpecHint, filter overheadindicates

144 CHAPTER 8. EVALUATION

1 Disk
Benchmark Version Correctly hinted Incorrectly hinted

Calls Blocks Calls Blocks
Agrep Naive 2915 (68%) 2915 (100%) 0 0

Filter 2914 (68%) 2914 (100%) 0 0
XDataSlice Naive 45241 (98%) 45241 (98%) 0 0

Filter 45239 (98%) 45239 (98%) 0 0
Gnuld Naive 8215 (63%) 14659 (73%) 2266 2605

Filter 8213 (63%) 14636 (73%) 272 395
Postgres 80% Naive 14531 (47%) 14531 (47%) 8813 8813

Filter 14677 (47%) 14677 (47%) 4045 4045
Postgres 20% Naive 3922 (45%) 3922 (45%) 2903 2903

Filter 3858 (44%) 3858 (44%) 729 729
Sphinx Naive 10288 (16%) 16006 (21%) 164 256

Filter 10018 (15%) 15648 (20%) 34 74

Table 8.10: Comparison of the hinting performance of SpecHint with the filtering mechanism and
naive SpecHint on one disk. The table shows how many of the read calls (and blocks) were correctly
hinted, as well as the number of incorrect hint calls (and blocks).

the cost of adding this mechanism; the difference betweenSpecHint, filterandSpecHint,
filter overheadindicates the benefit of adding the mechanism; andSpecHint, filterby itself
indicates the net benefit of adding the mechanism.

The results show that supporting the mechanism incurs at most a small cost; the largest
increase in elapsed time relative to the original executable is less than 5%. The cost is
greatest for the Postgres benchmarks because Postgres calls small procedures frequently,
causing the cost of maintaining the filtering return address stack to be more noticeable.

The results also show that using the mechanism to actually filter hints out never hurts
performance (i.e.SpecHint, filteris never slower thanSpecHint, filter overhead). This
indicates that any inadvertent filtering out of correct hints is always balanced or outweighed
by the benefit of filtering out incorrect hints. On the other hand, even the small cost of
supporting the mechanism does not appear worthwhile since the mechanism never produces
a substantial benefit.

8.2. SINGLE APPLICATION, IMPROVING SPECHINT EFFECTIVENESS 145

Agrep XDataSlice Gnuld P 80% P 20% Sphinx
−10

−5

0

5

10

15

20

R
ed

uc
tio

n
in

 1
00

 *
 E

la
ps

ed
 ti

m
e/

el
ap

se
d

tim
e

of
 o

rig
in

al
 a

pp
lic

at
io

n

1 Disk

SpecHint, filter overhead
SpecHint, filter

Agrep XDataSlice Gnuld P 80% P 20% Sphinx
−10

−5

0

5

10

15

20

R
ed

uc
tio

n
in

 1
00

 *
 E

la
ps

ed
 ti

m
e/

el
ap

se
d

tim
e

of
 o

rig
in

al
 a

pp
lic

at
io

n

2 Disks

Agrep XDataSlice Gnuld P 80% P 20% Sphinx
−10

−5

0

5

10

15

20

R
ed

uc
tio

n
in

 1
00

 *
 E

la
ps

ed
 ti

m
e/

el
ap

se
d

tim
e

of
 o

rig
in

al
 a

pp
lic

at
io

n

4 Disks

Figure 8.2: Performance impact of adding the hint correctness prediction and filtering mechanism.
SpecHint, filter overheadresults are for executables that perform all the work of the mechanism but
still issue every potential hint.SpecHint, filterresults are for executables that actually filter potential
hints. The graphs show the reduction in the elapsed time of these executables relative to the elapsed
time of naive SpecHint executables, expressed as a percentage of the elapsed time of the original,
non-hinting executables. Results are shown for the one, two and four disk configurations.

146 CHAPTER 8. EVALUATION

8.2.3 Simple value prediction

Use of incorrect data values can not only cause speculative execution to generate incorrect
hints, but also prevent speculative execution from generating correct hints. Incorrect data
values originate from read buffers for read calls that have not yet completed. (They could
also originate from system calls which are skipped during speculative execution, but this
is not an issue in any of my benchmarks.) In the SpecHint design, when the speculating
thread accesses a memory location in such a read buffer, it will simply acquire whatever
value happens to reside in that memory location. It may then propagate this probably
incorrect value during subsequent execution. As discussed in Sections 4.1.3 and 4.2.5, it
may be possible to improve speculative execution by selecting values for these buffers that,
while still possibly incorrect, are more likely to lead to faster or more accurate prefetching.
There is a tradeoff, however, between how much extra processing and memory resources
are needed to use more carefully selecting values during speculative execution, and how
much benefit will be obtained as a result of using those more carefully selected values.

The simplest value prediction mechanism would be to pre-select a single value to pre-
dict. Such a mechanism would not add any overhead for selecting what values to predict,
only overhead for causing the speculative execution to obtain the selected value when it at-
tempts to load from a read buffer for an incomplete read call. Figure 8.3 shows how adding
a simple single-value prediction mechanism to naive SpecHint changes the elapsed times
of the speculating executables.SpecHint, value overheadindicates results when all the
work of a single-value prediction mechanism is performed, but loads still obtain whatever
essentially random value happens to be in read buffers of incomplete read calls.SpecHint,
clear indicates results when all bits in read buffers of incomplete read calls are cleared (so
that loading from such a buffer will yield an integer value of zero),Setshows elapsed time
when all bits in such read buffers are set (i.e. an integer value of -1), andOne indicates
results when such read buffers are filled with the integer value of 1.

A naive implementation of a single-value prediction mechanism is for the speculating
thread to allocate space for, and fill, a shadow data copy of the read buffer for the read call
on which normal execution is blocked, and the read buffer for each subsequent read call
(or, rather, hint call) encountered during speculative execution. This turns out to be very
expensive, however, since the total amount of data read by each benchmark application
is quite large. To reduce the cost of this mechanism, my measured implementation does
not actually allocate and fill shadow data copies of read buffers. Instead, as discussed in
Section 4.2.5, it leverages the software copy-on-write checks to provide approximately the
same effect at a much lower cost. TheSpecHint, value overheadresults show that, even so,
the added work to implement this mechanism incurs a small but noticeable cost, increasing
the elapsed time relative to the original executable by up to 7%.

The differences between the results for each version of single-value prediction and the
SpecHint, value overheadresults indicate the benefit of that single-value prediction. These
differences demonstrate that single-value prediction, for single values of integer 0, -1 or
1, fails to substantially change the elapsed time of any of the benchmarks. Therefore, the
net “benefit” for these single values is negative in these tests. On the other hand, later

8.2. SINGLE APPLICATION, IMPROVING SPECHINT EFFECTIVENESS 147

Agrep XDataSlice Gnuld P 80% P 20% Sphinx
−10

−5

0

5

10

15

20

R
ed

uc
tio

n
in

 1
00

 *
 E

la
ps

ed
 ti

m
e/

el
ap

se
d

tim
e

of
 o

rig
in

al
 a

pp
lic

at
io

n

1 Disk

SpecHint, value overhead
SpecHint, clear
SpecHint, set
SpecHint, one

Agrep XDataSlice Gnuld P 80% P 20% Sphinx
−10

−5

0

5

10

15

20

R
ed

uc
tio

n
in

 1
00

 *
 E

la
ps

ed
 ti

m
e/

el
ap

se
d

tim
e

of
 o

rig
in

al
 a

pp
lic

at
io

n

2 Disks

Agrep XDataSlice Gnuld P 80% P 20% Sphinx
−10

−5

0

5

10

15

20

R
ed

uc
tio

n
in

 1
00

 *
 E

la
ps

ed
 ti

m
e/

el
ap

se
d

tim
e

of
 o

rig
in

al
 a

pp
lic

at
io

n

4 Disks

Figure 8.3: Performance impact of adding a simple value prediction mechanism.SpecHint, value
overheadresults are for executables that perform all the work of adding a single-value prediction
mechanism, but still use the essentially random values in stale memory locations.SpecHint, clear
andSpecHint, setresults are for executables that logically clear and set the bits in stale memory
locations, respectively (i.e. loading from such memory will return a zero or negative one, respec-
tively, if interpretted as an integer).SpecHint, oneresults are for executables that logically fill stale
memory locations with the integer value of one. The graphs show the reduction in the elapsed time
of these executables relative to the elapsed time of naive SpecHint executables, expressed as a per-
centage of the elapsed time of the original, non-hinting executables. Results are shown for the one,
two and four disk configurations.

sections in this chapter will reveal that, when combined with another optional mechanism,
single-value prediction can sometimes provide substantial benefit.

148 CHAPTER 8. EVALUATION

8.2.4 Experimental slicing

The previous two mechanisms attempt to reduce the impact of incorrect values on spec-
ulative execution. The other reason that the prefetching performance of speculating exe-
cutables is often not as good as the prefetching performance of manual hinting executables,
is that speculative execution may require many processing cycles to generate hints (and is
mainly restricted to consuming spare processing cycles). If there are insufficient spare pro-
cessing cycles in which to perform speculative execution, a speculating executable will not
be able to generate as many hints. Furthermore, even if there are sufficient spare processing
cycles to generate the same number of hints, a speculating executable will generate hints
later than the manual hinting executable, so its prefetches may not be able to hide as much
I/O latency.

There will often, however, be a substantial amount of work performed during the exe-
cution of an application that is orthogonal to determining the stream of read requests issued
by the application. Speculative execution does not need to perform this work to generate
correct hints, and should avoid performing this work in order to reduce the amount of pro-
cessing cycles and memory it needs to generate hints. Naive SpecHint makes no attempt
to identify such unnecessary work. As discussed in Section 4.1.2, experimental slicing is
a mechanism that enables speculative execution to identify and skip unnecessary work by
dynamically testing how skipping some work changes the speed at which speculative ex-
ecution can generate correct hints. As discussed in Section 4.2.4, my implementation of
this mechanism enables the speculating thread to skip loops that dynamic monitoring and
testing indicate would otherwise require many processing cycles, and decrease the speed at
which the speculating thread would generate correct hints.

Figure 8.4 shows how adding the experimental slicing mechanism to naive SpecHint
changes elapsed times.SpecHint, slice overheadindicates results when all the work neces-
sary to implement the mechanism is performed, but no code is skipped during speculative
execution.SpecHint, sliceindicates results when the speculating thread will actually skip
code.

TheSpecHint, slice overheadresults show that the work necessary to provide this mech-
anism never adds a noticeable amount of overhead. TheSpecHint, sliceresults show that
the mechanism provides a substantial benefit for Gnuld regardless of the number of disks,
as well as a small but noticeable benefit for Sphinx on four disks. Closer examination of
Gnuld revealed that the improved performance was the result of skipping a very small num-
ber of data-processing loops that are unnecessary for the generation of correct hints, but so
expensive that naive SpecHint is never able to complete the loops and generate hints for
subsequent reads.

8.2.5 Combining techniques

The previous three sections demonstrated that, of the three proposed mechanisms, only the
experimental slicing mechanism can provide substantial performance benefits on its own.
However, since these mechanisms are targetted at different problems, there is a chance that

8.2. SINGLE APPLICATION, IMPROVING SPECHINT EFFECTIVENESS 149

Agrep XDataSlice Gnuld P 80% P 20% Sphinx
−10

−5

0

5

10

15

20

R
ed

uc
tio

n
in

 1
00

 *
 E

la
ps

ed
 ti

m
e/

el
ap

se
d

tim
e

of
 o

rig
in

al
 a

pp
lic

at
io

n

1 Disk

SpecHint, slice overhead
SpecHint, slice

Agrep XDataSlice Gnuld P 80% P 20% Sphinx
−10

−5

0

5

10

15

20

R
ed

uc
tio

n
in

 1
00

 *
 E

la
ps

ed
 ti

m
e/

el
ap

se
d

tim
e

of
 o

rig
in

al
 a

pp
lic

at
io

n

2 Disks

Agrep XDataSlice Gnuld P 80% P 20% Sphinx
−10

−5

0

5

10

15

20

R
ed

uc
tio

n
in

 1
00

 *
 E

la
ps

ed
 ti

m
e/

el
ap

se
d

tim
e

of
 o

rig
in

al
 a

pp
lic

at
io

n

4 Disks

Figure 8.4: Performance impact of adding the experimental slicing mechanism.SpecHint, slice
overheadresults are for executables that perform all the work of the mechanism but do not skip any
code during speculative execution.SpecHint, sliceactually skips code during speculative execution.
The graphs show the reduction in the elapsed time of these executables relative to the elapsed time
of naive SpecHint executables, expressed as a percentage of the elapsed time of the original, non-
hinting executables. Results are shown for the one, two and four disk configurations.

they will be complimentary. This section explores that possibility by examining perfor-
mance when the mechanisms are added in different combinations.

Figure 8.5 shows how adding different combinations of these mechanisms changes the
elapsed time of the benchmarks. Of the three versions of the single-value prediction mech-
anism, onlyClear is used in these combinations becauseClear had (marginally) the best
performance in the single mechanism tests. The results demonstrate that the net benefit of
these mechanisms is generally not additive. For example, combiningFilter andSlicefor
Postgres 20% does not produce the combined benefit ofFilter andSlice, only the same ben-

150 CHAPTER 8. EVALUATION

Agrep XDataSlice Gnuld P 80% P 20% Sphinx
−10

−5

0

5

10

15

20

R
ed

uc
tio

n
in

 E
la

ps
ed

 ti
m

e/
el

ap
se

d
tim

e
of

 o
rig

in
al

 a
pp

lic
at

io
n 1 Disk

Filter
Clear
Slice
Filter + Clear
Filter + slice
Clear + slice
Filter + clear + slice

Agrep XDataSlice Gnuld P 80% P 20% Sphinx
−10

−5

0

5

10

15

20

R
ed

uc
tio

n
in

 1
00

 *
 E

la
ps

ed
 ti

m
e/

el
ap

se
d

tim
e

of
 o

rig
in

al
 a

pp
lic

at
io

n

2 Disks

Agrep XDataSlice Gnuld P 80% P 20% Sphinx
−10

−5

0

5

10

15

20

R
ed

uc
tio

n
in

 1
00

 *
 E

la
ps

ed
 ti

m
e/

el
ap

se
d

tim
e

of
 o

rig
in

al
 a

pp
lic

at
io

n
4 Disks

Figure 8.5: Performance impact of adding various combinations of the hint filtering, single-value
prediction and experimental slicing mechanisms. The graphs show the reduction in the elapsed
time of executables that use various combinations of these mechanisms relative to the elapsed time
of naive SpecHint executables, expressed as a percentage of the elapsed time of the original, non-
hinting executables.

efit asFilter by itself. On the other hand, the mechanisms are sometimes complimentary.
In particular, combiningClear andSliceproduces a substantial benefit for Postgres 80%
on multi-disk systems, even thoughClear by itself produces a substantial loss, andSlice
by itself has a negligible effect. Closer examination of the benchmark reveals thatSlice
enables the speculating thread to skip a substantial amount of work, but skipping that work
introduces additional stale data values that mislead the speculating thread. AddingClearas
well is sometimes sufficient to change these additional stale data values such that they no
longer mislead the speculating thread. Therefore, when spare processing cycles are limited,
the combination of these mechanisms can enable the speculating thread to generate correct

8.3. PROJECTING FUTURE PERFORMANCE 151

Disks Naive Filter Clear Slice Filter Filter Clear Filter Manual
+ Clear + Slice + Slice + Clear Hints

+ Slice
1 0.90 0.90 0.91 0.89 0.91 0.89 0.89 0.89 0.80
2 0.67 0.67 0.69 0.65 0.69 0.65 0.63 0.65 0.53
4 0.55 0.56 0.57 0.52 0.58 0.54 0.50 0.51 0.39

Table 8.11: Geometric mean across benchmarks of the elapsed time relative to the original, non-
hinting applications.

hints more quickly.
Table 8.11 summarizes the performance of the different options by presenting geomet-

ric means across the benchmarks of the elapsed times relative to the elapsed times of the
original, non-hinting executables. The table shows that the combination of mechanisms
which provides the best overall performance isClear andSlice. Not only does this combi-
nation provide the largest average benefit, but also (unlike many of the other combinations)
it never degrades the performance of naive SpecHint by a noticeable amount (the worst case
is a less than 2% loss in the elapsed time relative to the original, non-hinting executable).

8.3 Projecting future performance

In this section, I project how the performance benefit of speculative execution will change
assuming that the gap between processing speeds and disk access speeds continues to
widen, and that file cache miss rates continue to stay about the same. As noted in Chap-
ter 2, processing speeds have been increasing at around 58% a year, while disk access rates
have only been increasing at around 8% a year, and file trace studies have indicated that file
cache miss rates may not be decreasing despite increasing memory sizes.

Intuitively, as the gap widens, the number of cycles per I/O stall will increase, so the
number of instructions into the future that the speculating thread will be able to reach during
a given stall will increase. Therefore, the widening gap may enable the speculating thread
to issue hints earlier. On the other hand, if all data requests after theith future data request
depend on data that is not available during the current speculation, then there will be no
benefit to having more spare cycles with which to continue the current speculation after
generating a hint for thatith future data request. Therefore, speculative execution may not
always be able to capitalize on the additional processing opportunity.

To determine which of these effects will predominate for my benchmarks, I simulated
the effect of a wider processor to disk access speed gap by having the striper delay I/O
requests. First, the striper limits the number of outstanding requests per disk to one. Then,
to simulate multiplying the gap on my testbed by a factor ofn, if the last request to a disk
was issued to the disk at timetb and completed at timete, then the striper delays issuing
a new request to the disk until timetb + n � (te � tb). The striper also delays notifying

152 CHAPTER 8. EVALUATION

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Years in the future

0

10

20

30

40

50

60

70

80

90

100

E
la

ps
ed

 ti
m

e
/ E

la
ps

ed
 ti

m
e

of
 o

rig
in

al
 a

pp
lic

at
io

n
(%

)

Agrep

SpecHint, naive
SpecHint, clear + slice
Manual hints

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Years in the future

0

10

20

30

40

50

60

70

80

90

100

E
la

ps
ed

 ti
m

e
/ E

la
ps

ed
 ti

m
e

of
 o

rig
in

al
 a

pp
lic

at
io

n
(%

)

XDataSlice

SpecHint, naive
SpecHint, clear + slice
Manual hints

Figure 8.6: Projected performance of naive SpecHint (SpecHint, naive), SpecHint with logically
clearing stale bits and experimental slicing (SpecHint, clear + slice), and manually modified appli-
cations (Manual hints) for Agrep and XDataSlice. The results for zero years in the future (i.e. now)
were measured without any delay in the striper. The other results were obtained by adding delay in
the striper as described in the text. The number of years that the simulated system is more advanced
than the base system was calculated assuming a 58% annual increase in the processor speed, and a
8% annual increase in the disk access rate.

the system that the original request completed until that time. Finally, I assume that the
relative values of the resulting elapsed times for original, speculating and manual hinting
executables is indicative of what their relative elapsed times will be on future systems for
which the gap between processing speeds and disk access times isn times that gap on my
testbed.

This simulation is not fully accurate because it will misrepresent the relative speed
of disk data transfer, which has been improving at a different rate than disk positioning
times. In particular, disk data rates have been improving at 40% per year, so the simulation
uses an artificially slow transfer rate. There are two factors which lessen the impact of
this inaccuracy on the simulation results. First, most of the data requests are relatively
small, so positioning time dominates the disk service time. Second, since the disks perform
track-buffer read-ahead while the striper is delaying request initiation and completion, disk
requests which are physically sequential will appear to have a faster than modelled transfer
rate.

Figures 8.6 and 8.7 show results of simulating the future performance of naive SpecHint,
SpecHint with theClear andSlicemechanisms, and the manual hinting executables. Only
theClear + slicecombination of the optional mechanisms was tested since the prior section
found this to be the best combination.

Unsurprisingly, the performance benefit of the manual hinting executables increases,
but only in proportion to the percentage of their elapsed times that was due to processing

8.3. PROJECTING FUTURE PERFORMANCE 153

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Years in the future

0

10

20

30

40

50

60

70

80

90

100

E
la

ps
ed

 ti
m

e
/ E

la
ps

ed
 ti

m
e

of
 o

rig
in

al
 a

pp
lic

at
io

n
(%

)
Gnuld

SpecHint, naive
SpecHint, clear + slice
Manual hints

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Years in the future

0

10

20

30

40

50

60

70

80

90

100

E
la

ps
ed

 ti
m

e
/ E

la
ps

ed
 ti

m
e

of
 o

rig
in

al
 a

pp
lic

at
io

n
(%

)

Postgres 80%

SpecHint, naive
SpecHint, clear + slice
Manual hints

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Years in the future

0

10

20

30

40

50

60

70

80

90

100

E
la

ps
ed

 ti
m

e
/ E

la
ps

ed
 ti

m
e

of
 o

rig
in

al
 a

pp
lic

at
io

n
(%

)

Postgres 20%

SpecHint, naive
SpecHint, clear + slice
Manual hints

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Years in the future

0

10

20

30

40

50

60

70

80

90

100

E
la

ps
ed

 ti
m

e
/ E

la
ps

ed
 ti

m
e

of
 o

rig
in

al
 a

pp
lic

at
io

n
(%

)

Sphinx

SpecHint, naive
SpecHint, clear + slice
Manual hints

Figure 8.7: Projected performance of naive SpecHint (SpecHint, naive), SpecHint with logically
clearing stale bits and experimental slicing (SpecHint, clear + slice), and manually modified appli-
cations (Manual hints) for Gnuld, Postgres 20%, Postgres 80% and Sphinx.

rather than I/O stall (which is largest for Sphinx, as indicated by the figures in Table 8.1).
The curves for the speculating executables are similar in shape to those for the manual
hinting executables for all but the Postgres benchmarks, for which the curves for the naive
SpecHint executables converge towards the curves for the manual hinting executables. This
indicates that, at least on systems in the range of the simulation experiment’s projection,
speculative execution may be able to leverage any increased abundance of spare processing
cycles to deliver as or greater benefits than on my testbed. In particular, for the Postgres
benchmarks, the convergence of the naive SpecHint curves towards the manual hinting
curves indicate that speculative execution mainly needs more spare processing cycles. In
addition, notice that, while SpecHint does not improve the performance of Sphinx by a

154 CHAPTER 8. EVALUATION

substantial amount on my testbed, the simulation experiment indicates that the approach
may yield substantial improvements for this benchmark on future systems with more spare
processing cycles.

Finally, consider the relative performance of naive SpecHint andClear + slice. For
both Postgres benchmarks, the curves for naive SpecHint andClear + slice cross. The
reason is that, due to the incremental nature of the tests used to determine which chunks
should be skipped, experimental slicing can erroneously identify a chunk of code as a
chunk that should be skipped when the speculating thread sometimes needs to execute that
chunk to generate correct hints. When spare cycles are plentiful, so there is less benefit
to skipping chunks, these erroneous identifications are more likely to hurt the performance
of speculative execution. On the other hand, for Gnuld, the relative performance of naive
SpecHint andClear + Slice remains the same, indicating that even an up to five times
increase in the number of cycles per I/O stall is not sufficient for naive SpecHint to proceed
past the expensive and unnecessary loops that experimental slicing allows the speculating
thread to skip.

8.4 Concurrent applications

The single application test results described in the previous sections do not fully reveal the
performance of the speculative execution approach since speculative execution relies on
spare processing resources and increases contention for shared machine resources. Con-
current applications will reduce the number of spare processing cycles, which may ham-
per speculative execution’s ability to generate prefetching hints. Moreover, by increasing
the contention for shared machine resources, speculating applications may hurt the per-
formance of concurrently executing applications. This section investigates these issues by
examining the performance of speculative execution when there are fewer spare process-
ing cycles, and the impact on application performance of replacing original, non-hinting
executables with speculating executables in a multi-application mix. To isolate the im-
pact of adding speculative execution as opposed to adding both speculative execution and
prefetching, results are also shown for replacing non-hinting executables with manual hint-
ing executables.

8.4.1 Impact of decreasing spare processing resources

To examine the effect of concurrent applications reducing the availability of spare process-
ing resources, I conducted experiments in which a disk-bound application executes concur-
rently with a CPU-bound application. The CPU-bound application is a simple dummy ap-
plication which sits in a tight loop, sleeping periodically. It executes at the default schedul-
ing priority. Therefore, when executed with a speculating executable, the speculating thread
will execute only when either both the CPU-bound application and the original thread in the
speculating executable are blocked, or as the result of priority inversion due to the operating
system’s no-starvation scheduling policy (as discussed in Section 5.1.1).

8.4. CONCURRENT APPLICATIONS 155

0%10%20%30%40%50%60%70%80%90%100%
CPU load from CPU−bound application

0

5

10

15

20

25

30
E

la
ps

ed
 ti

m
e

(s
)

Agrep

Original
SpecHint, naive
SpecHint, clear + slice
Manual hints

0%10%20%30%40%50%60%70%80%90%100%
CPU load from CPU−bound application

0

50

100

150

200

250

300

350

E
la

ps
ed

 ti
m

e
(s

)

XDataSlice

Original
SpecHint, naive
SpecHint, clear + slice
Manual hints

0%10%20%30%40%50%60%70%80%90%100%
CPU load from CPU−bound application

0

20

40

60

80

100

120

E
la

ps
ed

 ti
m

e
(s

)

Gnuld

Original
SpecHint, naive
SpecHint, clear + slice
Manual hints

0%10%20%30%40%50%60%70%80%90%100%
CPU load from CPU−bound application

0

30

60

90

120

150

180

210

240

270

E
la

ps
ed

 ti
m

e
(s

)

Postgres 80%

Original
SpecHint, naive
SpecHint, clear + slice
Manual hints

0%10%20%30%40%50%60%70%80%90%100%
CPU load from CPU−bound application

0

10

20

30

40

50

60

70

80

90

100

110

E
la

ps
ed

 ti
m

e
(s

)

Postgres 20%

Original
SpecHint, naive
SpecHint, clear + slice
Manual hints

0%10%20%30%40%50%60%70%80%90%100%
CPU load from CPU−bound application

0

50

100

150

200

250

300

350

E
la

ps
ed

 ti
m

e
(s

)

Sphinx

Original
SpecHint, naive
SpecHint, clear + slice
Manual hints

Figure 8.8: Elapsed time of the original, non-hinting application, the naively speculating appli-
cations, the speculating applications including theClear andSlicemechanisms, and the manually
modified applications when executed concurrently with a dummy CPU-intensive application. The
file system is striped across four disks.

156 CHAPTER 8. EVALUATION

4 Disks
Agrep XDataSlice Gnuld Postgres Postgres Sphinx

80% 20%
CPU load 10% 12% 9% 20% 29% 66%

Table 8.12: Percentage of elapsed time spent processing for original, non-hinting applications exe-
cuted individually, on a four-disk system. These figures were calculated from the results in Table 8.1.

Figure 8.8 shows the results for this experiment. The y-axis in these graphs show the
elapsed time of the disk-bound application. The x-axis shows the CPU load incurred by
the CPU-bound application. Notice that the percentage of processing cycles which are
spare for a data point with an x-value ofLCPU�bound is less than100% � LCPU�bound; in
particular, it is(100% � (LCPU�bound + LOriginalthread)) whereLOriginalthread is the CPU
load incurred by the original thread of the benchmark application in obtaining that data
point. For each line on each graph, the left-most data point shows the elapsed time when
the CPU-bound application never sleeps; the amount by which the x-value of this data
point is less than 100% is approximately the load incurred by the original thread of the
benchmark application in obtaining this data point.

The results show that the elapsed time of the manual hinting executables, as well as that
of the original, non-hinting executables, are not greatly affected by CPU load for all the
benchmarks except Sphinx. This is not surprising since these executables do not rely on
spare processing cycles to generate demand or prefetch I/Os, and Sphinx spends by far the
most of its elapsed time processing (so it is inherently much more sensitive to competition
for processing cycles). Table 8.12 shows the percentage of elapsed time spent processing
for each of the original, non-hinting executables when they were executed alone on a four-
disk system.

On the other hand, barring priority inversion due to the operating system’s fairness
policy, the speculating executables will not be able to generate prefetch I/Os unless there
are spare processing cycles in which to perform speculative execution. This is indicated by
the lack of improvement in the elapsed time of most of the speculating executables when
the CPU-bound application never sleeps (the left-most data point in each graph). Notice
that speculating XDataSlice and Gnuld are able to use even this minimal number of cycles
to deliver substantial performance benefit.

The steep downward slope of the results curves for speculating Agrep, XDataSlice and
Gnuld show that these speculating executables can provide significant performance ben-
efits even at high CPU load. For example, even when only 5% of the processing cycles
were available for speculative execution (because the CPU-bound application plus the orig-
inal thread of the speculating executable consumed 95% of the processing cycles), naive
SpecHint provides an 18% decrease in the elapsed time of the Agrep benchmark, while
SpecHint with theClear andSlicemechanisms provides more than a 50% decrease.

The more gradual downward slope of the results curves for the speculating Postgres
benchmarks, and SpecHint’s inability to improve the performance of the Sphinx bench-

8.4. CONCURRENT APPLICATIONS 157

mark on current systems, reflects the fact that these benchmarks are more CPU-intensive,
as shown in Table 8.12. After all, the more cycles normal execution requires betweenread
calls, the more cycles speculative execution is likely to require to generate prefetches. In
the graphs, this can be seen in SpecHint’s ability to provide benefit at higher CPU loads for
the (less CPU-intensive) Postgres 80% benchmark than the (more CPU-intensive) Postgres
20% benchmark. Regardless, notice that speculating Postgres is able to provide substantial
benefit even when there are substantially fewer processing cycles. This suggests that, while
SpecHint would not improve the performance of Postgres if Postgres is executed concur-
rently with a CPU-intensive application, it could still deliver substantial improvements if
Postgres is executed concurrently with, for example, less CPU-intensive interactive appli-
cations.

Finally, comparing the performance of the naive SpecHint and SpecHint with theClear
andSlicemechanisms shows that these mechanisms sometimes have a greater benefit than
revealed by the single application results in Section 8.2. In particular, by decreasing the
amount of processing cycles that the speculating thread requires to generate prefetches,
they increase the benefit that speculative execution can provide when fewer processing
cycles are available. Notice that, while these mechanisms did not provide benefit for the
Agrep benchmark in single-application tests, they reveal a substantial benefit for the Agrep
benchmark when there are fewer processing cycles.

8.4.2 Impact of increasing resource contention

To examine how increasing contention for I/O bandwidth and memory, as well as process-
ing, resources will effect the performance of speculating applications, I ran experiments
in which a pair of disk-bound applications were executed concurrently. Each graph in
Figure 8.9 shows the results for a particular experiment (i.e. one pair of benchmarks).
The benchmark pairings tested were: Agrep/Gnuld, Gnuld/Postgres 20%, Sphinx/Postgres
80%, and Postgres 80%/XDataSlice.

Concurrently executing two disk-bound applications could potentially improve appli-
cation throughput, particularly when there is parallelism in the I/O system. While one
application is stalled on I/O, the other application may be able to make use of the proces-
sor. Furthermore, if both applications are stalled on I/O, the I/O system may be able to
service their requests in parallel. On the other hand, concurrent applications may compete
for shared machine resources in a mutually harmful manner. For example, the interleaving
of disk requests may hurt I/O performance by disrupting per-application request locality,
increasing disk head positioning time. Comparing the total elapsed times for concurrently
executed original, non-hinting binaries (as indicated by the left-most bar in each of the
graphs in Figure 8.9) with the sum of the elapsed times measured in single application tests
of the original, non-hinting executables (shown in Table 8.1) indicate that the former ef-
fect is more pronounced for these tests. In particular, the total elapsed time with concurrent
original executables was greater than the sum of the elapsed times of the individual original
executables in the single application tests only for the Postgres 80%/XDataSlice test. In all

158 CHAPTER 8. EVALUATION

Total Gnuld Agrep
0

20

40

60

80

100

E
la

ps
ed

 ti
m

e
(s

)

Original

Naive

C + S

Manual

Total Gnuld Postgres 20%
0

20

40

60

80

100

120

140

160

E
la

ps
ed

 ti
m

e
(s

)

Original
Base
C + S
Manual

Total Sphinx Postgres 80%
0

50

100

150

200

250

300

350

E
la

ps
ed

 ti
m

e
(s

)

Original
Base
C + S
Manual

Total XDataSlice Postgres 80%
0

50

100

150

200

250

300

350

400

450

500

550

600
E

la
ps

ed
 ti

m
e

(s
)

Original
Base
C + S
Manual

Figure 8.9: Elapsed time of multiple disk-bound applications when both applications are original,
non-hinting applications, naive SpecHint applications, speculating applications with theClear and
Slicemechanisms, or applications manually modified to issue hints. The file system was striped
across four disks.

the other combinations, the total elapsed time was less than the sum of the elapsed times of
the individual original executables by a noticeable amount.

The elapsed times when the original, non-hinting executables were executed concur-
rently is a baseline from which the performance benefit of hinting executables can be seen.
The elapsed times when the manual hinting executables were executed concurrently can be
taken as the optimal performance with prefetching. When multiple speculating executables
execute concurrently, the increased competition for I/O bandwidth between the prefetches
on behalf of each executable will increase the sensitivity to hints which are issued later
than they would be with manual hinting executables. In addition, the speculating threads

8.5. TRANSFORMATION OVERHEAD 159

must compete between themselves for a smaller pool of processing cycles (since the two
original threads claim a larger percentage of the total processing cycles). Nevertheless, the
results show that both naive SpecHint and SpecHint with theClear andSlicemechanisms
are able to provide substantial performance gains for all the applications except Sphinx
in the Sphinx/Postgres 80% tests.Clear + slice improves the performance of Sphinx by
only a small amount, while naive SpecHint degrades the performance of Sphinx by a small
amount. This is not surprising since naive SpecHint is not effective for Sphinx even in the
single application tests. Overall, however, these results are consistent with the results of
the prior section, which showed that speculative execution does not require many cycles to
be effective.

8.5 Transformation overhead

The SpecHint design requires that applications undergo a binary transformation step before
they can take advantage of the speculative execution approach. The SpecHint tool takes a
noticeable amount of time to transform an application binary because it performs several
analysis and transformation steps (e.g. to create and add safety checks to shadow code). It
also produces binaries that are substantially larger than the original binaries because they
contain additional code and data structures to support speculative execution. This section
demonstrates that the SpecHint design is feasible by showing that the cost of transforming
the benchmark applications is not prohibitively large, even with the SpecHint tool, which
is an unoptimized research implementation.

The figures in this section were obtained by transforming the application binaries us-
ing the SpecHint tool according to the SpecHint design on an AlphaStation 500 (500 MHz
Alpha 21164 processor) with 1.5 GB of main memory. Table 8.13 shows the elapsed time
for transforming each benchmark application. In particular, the SpecHint tool transformed
the benchmark applications in 24 to 139 seconds. These are reasonable amounts of time
since each application only needs to be transformed once. Moreover, while larger applica-
tions took longer to transform, notice that the relationship between size and time is roughly
linear.

The table also shows the sizes of the original and transformed binaries. Since a non-
research implementation would handle dynamic libraries, obviating the inclusion of the
libraries for threading in transformed binaries, the table also shows the size of the original
binary with thread libraries. Ignoring the increase due to the libraries for threading, we
can see that the SpecHint tool increases binary sizes by an average of 174%. Increasing
the sizes of binaries raises two concerns: whether there will be adequate storage for the
larger binaries, and whether the performance of the binaries will degrade since an increase
in binary size could hurt memory and processor cache performance. The latter concern
can be dismissed because, as demonstrated in the preceeding sections, the transformed
binaries almost always have better performance than the original binaries. In terms of
storage overhead, the increase in binary sizes, while substantial, should not be prohibitive.
Storage capacity is increasing at 60% a year. Indeed, the increasing abundance of storage

160 CHAPTER 8. EVALUATION

Benchmark Transformation Original Original + thread Transformed
time (s) size libraries size size �

Agrep 24 232 KB 864 KB 1.5 MB 632 KB
XDataSlice 139 4.4 MB 4.4 MB 8.9 MB 4.5 MB
Gnuld 30 536 KB 1.1 MB 2.1 MB 1.0 MB
Postgres 125 2.3 MB 3.0 MB 6.4 MB 3.4 MB
Sphinx 34 992 KB 1.5 MB 3.0 MB 1.5 MB

Increase in executable size due to
Benchmark Support Shadow code Shadow data

routines Unmodified copy Safety checks Read-only Read-write
Agrep 10 KB 330 KB 97 KB 92 KB 103 KB
XDataSlice 10 KB 2.6 MB 905 KB 450 KB 574 KB
Gnuld 10 KB 532 KB 173 KB 158 KB 151 KB
Postgres 10 KB 1.8 MB 455 KB 428 KB 801 KB
Sphinx 10 KB 568 KB 166 KB 152 KB 640 KB

Table 8.13: Elapsed time for the SpecHint tool to transform each benchmark application according
to the SpecHint design, and the amount by which it increases the size of executables. The size
increase due to shadow code mainly consists of the copy of the instructions in the original code
section.

has been the premise of several recent research projects [48, 58] that propose ways we can
exploit this excess capacity.

The table also breaks down the increase in binary sizes. These figures show that, as
intended, the SpecHint support routines comprise a very modest amount of code and data
(10 KB). It also shows that, for all cases except Sphinx, over half of the increase is sim-
ply due to adding a copy of the text segment as the first step in setting up shadow code.
Notice that the safety mechanisms described in Section 6.3 are a substantial contributor to
code bloat. In particular, the combination of software copy-on-write checks, stack pointer
checks, global pointer checks, and indirect control transfer target address checks account
for 20% to 25% of the total size of shadow code. Most (around 80%) of this code bloat is
due to adding software copy-on-write checks. The read-only data, which mainly consists
of the data structures used by the indirect control transfer target address checks and the
jump tables for shadow code, also account for a substantial portion of the size increase.
Finally, the size increase due to read-write data is almost entirely unnecessary as it is just
an artifact of some safe but inefficient assumptions that simplified my implementation (in
particular, the way in which the SpecHint tool implements jump tables for shadow code
creates shadow data copies of entire data sections from the original binary, rather than just
the portions of those sections which contain jump tables).

8.6. SUMMARY 161

8.6 Summary

This chapter presents experimental results that demonstrate that the SpecHint design is of-
ten effective, reducing elapsed times by 25% to 71% across five of six benchmarks on
a four-disk system. The results also demonstrate that, for two of the six benchmarks,
Agrep and XDataSlice, the SpecHint design can deliver near-optimal elapsed times (where
applications manually modified to issue prefetching hints were assumed to yield opti-
mal performance). For three other benchmarks, Gnuld and the Postgres benchmarks, the
SpecHint design can deliver a substantial proportion of the potential performance benefits
of application-level I/O prefetching.

For the four benchmarks for which the SpecHint design cannot deliver optimal perfor-
mance, it sometimes falls short because the data values in read buffers of incomplete read
calls are not available to it, while at other times it falls short because there are insufficient
spare processing cycles in which to pursue speculative execution. An experimental slic-
ing mechanism, particularly in combination with a simple single-value prediction mecha-
nism, substantially increases the effectiveness of speculative execution for two of these four
benchmarks, Gnuld and Postgres 80%, by enabling speculative execution to skip a substan-
tial amount of unnecessary and (in Gnuld’s case) misleading work. Moreover, simulation
experiments projecting future performance indicate that the effectiveness of speculative
execution may increase automatically for three of these four benchmarks, both Postgres
benchmarks and the Sphinx benchmark, as the gap between processing speeds and disk
access times continues widening.

The chapter also substantiates two basic claims about the SpecHint design: that it avoids
increasing the amount of work performed during normal execution, and that it allows spec-
ulative execution to resynchronize with normal execution quickly. On the other hand, the
evaluation demonstrates that the safety mechanisms in the design slow speculative execu-
tion by a substantial degree, and the design greatly increases memory pressure. Therefore,
though no results were reported on systems that do not have ample memory, the design
would probably degrade performance on such systems.

Speculative execution depends on the availability of spare processing and I/O resources.
In both absolute and relative terms, SpecHint is much more successful on a system that
supports I/O parallelism (i.e. by distributing data across more than one disk). On the
other hand, SpecHint is able to provide significant performance benefits even on a single
disk. Furthermore, multi-process experiments demonstrate that SpecHint can produce sub-
stantial performance gains even when there are far fewer spare processing cycles. These
experiments also demonstrate that multiple speculating applications can produce substan-
tial performance gains even when they compete with each other for processing, memory
and I/O resources.

Finally, the chapter shows that the static transformation step required by the SpecHint
design takes a reasonable amount of time, and produces binaries which, while larger, should
not pose a storage problem when taking trends in storage capacity into account.

162 CHAPTER 8. EVALUATION

Chapter 9

Conclusions

The gap between processing speeds and I/O access times is widening. This trend is caus-
ing applications that must fetch data from disk to spend an increasing proportion of their
execution time stalled on I/O, and to derive diminishing benefits from rapid increases in
processor technology. I/O prefetching, a well-known technique for hiding disk latency, has
the potential to dramatically decrease I/O stall time, particularly when the data that needs to
be fetched is distributed across multiple disks. One major challenge to applying this tech-
nique in practice is the difficulty of generating accurate prefetches in a timely manner. This
dissertation work focuses on the problem of generating prefetches without programmer
involvement.

This chapter begins in Section 9.1 with a summary of the dissertation. Section 9.2 then
highlights the contributions of this research. Finally, Section 9.3 discusses directions for
future work.

9.1 Dissertation summary

Provided application source code is available, programmers could manually modify appli-
cations such that they would issue prefetch calls. However, such an approach can require
substantial programming and debugging effort, and relies on the expensive resource of
skilled programming labour. Techniques that automate the generation of prefetches are
therefore desirable. Unfortunately, prior automatic techniques are insufficient for generic
I/O-intensive applications with non-trivial access patterns. Motivated by this shortcoming,
this dissertation work proposes a new automatic approach to initiating prefetching based
on speculative execution, a technique that has long been used to avoid pipeline stalls in
processors.

The key to the proposed approach is the unique mechanism it uses to predict what data
a target process will access. In particular, it adds an execution of that process’s code that
exploits spare processing cycles. This added execution runs ahead of the target process’s
normal execution by skipping some operations, like blocking accesses to uncached data.
This permits differences between the data values used during the added speculative exe-

163

164 CHAPTER 9. CONCLUSIONS

cution and the data values that will be used during its target normal execution. Despite
any such differences, the approach predicts that the data accesses encountered during a
speculative execution will often be the same as the data accesses that will occur during its
target normal execution. Thus, the approach predicts that, by initiating prefetching for that
data, a speculative execution would be able to reduce the I/O stall time of its target normal
execution.

This dissertation highlights three important goals to a design for adding speculative exe-
cution: safety, low overhead, and effectiveness. It discusses the challenges of guaranteeing
safety, limiting overhead and promoting effectiveness. In each case, it discusses different
possible design choices.

The dissertation also describes the choices taken within a prototype design and imple-
mentation of the proposed approach called SpecHint. The SpecHint design is a user-level
design based on binary modification. It assumes operating system support for I/O prefetch-
ing, but no operating system support specific to speculative execution. For I/O prefetching
support, my implementation of the SpecHint design takes advantage of the TIP informed
prefetching and caching system, and a prefetch-aware software disk striper [43].

Two key elements of the SpecHint design are: 1) the addition of a new thread to each
target process, and 2) the generation of a modified copy of the code from each original
application binary, which is included in its transformed application binary. The added
speculating threads are responsible for performing speculative execution on behalf of their
process’s normal execution. They accomplish this by executing the added shadow code,
which is generated in a manner that prevents speculating threads from violating safety.

In order to quantify the effectiveness of the proposed approach, and the SpecHint design
and implementation, and to evaluate the overhead in practice, I report on a variety of exper-
iments using six benchmarks from the TIP benchmark suite. The benchmark applications
are all real-world I/O-intensive applications, and include a wide variety of access patterns
and application types. Two versions of each application’s source code were used to produce
the executables used in the evaluation. The original version of the source code, which does
not contain prefetch calls, was used to produce both the base-line non-prefetching applica-
tion executable, and the speculating executables. In addition, a version of the source code
that had been manually modified to include prefetch calls was used to produce the manual
prefetching executable.

The experimental results demonstrate that the speculative execution approach, and the
SpecHint design and implementation, are often effective, reducing elapsed times by 25% to
71% across five of the six benchmarks on a four-disk system. The results also demonstrate
that, for two of the six benchmarks, text search and data visualization, SpecHint delivers
near-optimal elapsed times (where the manual prefetching executables were assumed to
yield optimal performance). For three other benchmarks, linking and two database joins,
SpecHint delivers a substantial proportion of the potential performance benefits of optimal
prefetching. Finally, simulations suggest that, on future systems, SpecHint may be able to
deliver substantial benefit for the remaining (CPU-intensive) benchmark, speech recogni-
tion, as well.

9.2. CONTRIBUTIONS 165

9.2 Contributions

This dissertation work introduces a novel approach to generating I/O prefetches automati-
cally. It is the first exploration of automating speculative execution entirely in software. It
is also the first complete design and evaluation of a system for using speculative execution
to hide I/O latency. It makes several key contributions in terms of general findings, backed
by specific results, which can be summarized as follows:

� Speculative execution can be performed to generate prefetches while guaranteeing
safety (no erroneous changes to system behavior) for a large class of applications,
without requiring special operating system support. The dissertation details the as-
sumptions that establish which applications the prototype design can be applied to
safely, which includes the five disparate applications in the benchmark suite.

� Speculative execution is capable of identifying a substantial amount of the uncached
data that will be accessed by a wide range of I/O-intensive applications. Experimental
evaluation of the prototype implementation demonstrate reductions in the percentage
of requests for uncached, unprefetched blocks ranging from 68% to 98% across four
disparate applications (five benchmarks).

� There are sufficient resources on current systems for speculative execution to provide
substantial performance benefits. Experimental evaluation of the prototype imple-
mentation demonstrate reductions in elapsed times of up to 25%, 53%, and 71% on
one-, two-, and four-disk systems, respectively.

� Assuming that the gap between processing speeds and disk access times continues
to widen, simulation experiments indicate that, on future systems, the benefit of this
approach would not decrease, and may even increase for some applications.

� Multi-process experiments demonstrate that speculative execution can provide sub-
stantial performance benefit even when there are fewer spare processing cycles, and
more competition for memory and I/O resources.

Finally, in the process of this dissertation work, I implemented a tool which modi-
fies application binaries such that they will perform speculative execution to generate I/O
prefetches. This tool could be used to aid further investigations in this area.

9.3 Future work

Having demonstrated that speculative execution is a viable approach to automating I/O
prefetching, this dissertation encourages several directions for future work.

One direction is to investigate ways to improve the effectiveness of an implementation
based on binary modification. For example, the figures in Table 8.8 demonstrate that soft-
ware copy-on-write increased the amount of work performed during speculative execution

166 CHAPTER 9. CONCLUSIONS

by a factor of 2 to 9. It may be possible to increase the effectiveness of the SpecHint im-
plementation by leveraging more sophisticated static analysis to reduce the number of soft-
ware copy-on-write checks. As another example, inspection of the code of the benchmark
applications, and experiments with manually-configured slices, demonstrate that there is
much room for improving the mechanisms in the SpecHint implementation for identifying
and skipping unnecessary work, particularly unnecessary work that misleads speculative
execution.

Another direction is to investigate how a mostly user-level design could benefit from
some operating system support specific to speculative execution. In this dissertation work,
I demonstrated that a design for automating the speculative execution approach can de-
liver substantial performance benefits and guarantee safety for a wide range of applications
without any operating system support specific to speculative execution. As discussed in
Section 6.2, however, simple operating system support could obviate the need for many
of the assumptions that restrict (to however small a degree) the range of applications for
which a user-level design like SpecHint guarantees safety. Moreover, a major weakness
of the SpecHint design is that it could substantially hurt the performance of normal ex-
ecutions when memory resources are not abundant. As discussed in Section 5.1.2, this
weakness was driven by the lack of appropriate mechanisms on current operating systems.
With operating system support, however, a design might be able to contain its effect on
memory performance.

In addition, simple operating system support may also enable this approach to be ap-
plied effectively to a much broader range of applications. In this dissertation work, I
demonstrated that this approach is effective for applications that issue explicit file read
calls. It remains to be seen whether this approach would also be effective for applications
that generate I/O requests by accessing mapped files, or for applications that page heavily
from swap space. In both cases, it would be helpful to have an efficient mechanism for
detecting whether some page is in memory. One possibility would be a bit vector indicat-
ing which pages are in memory, set by the operating system and mapped into a process’s
address space [36]. With such a bit vector, it would be easy to extend the SpecHint design
to accomodate both types of applications. In particular, copy-on-write checks could be
leveraged to detect whether a memory access would refer to a page not in memory (and, in
the first case, fall within an address range in which a file is mapped). If so, the speculating
thread could issue a prefetch call for the appropriate data and return some stale value; if not,
the speculating thread could access and use the data in its computations without blocking
on I/O. Such a design would probably be effective for applications that generate I/O re-
quests by accessing mapped files. Due to the prevalence of pointer-chasing code, however,
more work may be required to develop a design that would be effective for applications that
page heavily from swap space.

Another direction is to investigate the capabilities of an in-kernel design based on fork-
ing as sketched in Section 3.2.2. In addition to containing memory overhead, such a design
could easily guarantee safety with no assumptions aside from the base safety assumption
regarding shared resource usage (for the reasons discussed in Section 6.2.1). In addition,

9.3. FUTURE WORK 167

by enforcing safety within the operating system, such a design could guarantee safety with
less impact on effectiveness (e.g. without endangering effectiveness for applications which
dynamically generate code). Furthermore, such a design may require substantially less im-
plementation effort than any design based on binary modification. On the other hand, since
control only passed to the operating system in certain circumstances, some mechanisms
(like experimental slicing) that can be easily incorporated in a user-level design may be
harder to incorporate efficiently in an in-kernel design.

Finally, with or without operating system support, other directions include investigating
whether this approach provides benefit to multi-threaded applications, how to best exploit
multi-processors, and how to share resources amongst multiple speculative executions. In
the first case, three possibilities would be to create a single speculative thread/process for
each target process, to create one thread/process per thread in the target process, or to
create a pool of threads/processes shared by the threads in the target process. In the second
case, as discussed in Section 4.1.2, one possibility would be use multiple processes to more
accurately and quickly, and with less cost, detect whether some work is necessary. The last
case is briefly discussed in Section 4.1.4.

168 CHAPTER 9. CONCLUSIONS

Bibliography

[1] S. Akyurek and K. Salem. Adaptive block rearrangement. InProceedings of the IEEE
International Conference on Data Engineering, April 1993.

[2] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and John K.
Ousterhout. Measurements of a distributed file system. InProceedings of the 13th
ACM Symposium on Operating Systems Principles (SOSP), October 1991.

[3] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. A study of integrated
prefetching and caching strategies. InProceedings of the 1995 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems, 1995.

[4] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. Implementation and perfor-
mance of integrated application-controlled file caching, prefetching and disk schedul-
ing. ACM Transaction on Computer Systems (TOCS), 14(4):311–343, 1996.

[5] Pei Cao, Edward W. Felten, and Kai Li. Application-controlled file caching policies.
In Proceedings of the USENIX Winter 1994 Technical Conference, 1994.

[6] K.M. Curewitz, P. Krishnan, and J.S. Vitter. Practical prefetching via data compres-
sion. In Proceedings of the 1993 ACM Conference on Management of Data (SIG-
MOD), May 1993.

[7] Samya Debray, Robert Muth, and Matthew Weippert. Alias analysis of executable
code. InProceedings of the 25th ACM Symposium on Principles of Programming
Languages (POPL), January 1998.

[8] Angela Demke Brown and Todd C. Mowry. Taming the memory hogs: Using com-
piler inserted releases to manage physical memory intelligently. InProceedings of the
4th USENIX Symposium on Operating Systems Design and Implementation (OSDI),
October 2000.

[9] James Dundas and Trevor Mudge. Improving data cache performance by pre-
executing instructions under a cache miss. InProceedings of the 1997 International
Conference on Supercomputing, July 1997.

[10] R. J. Feiertag and E. I. Organisk. The multics input/output system. InProceedings of
the 3rd ACM Symposium on Operating Systems Principles (SOSP), 1971.

169

170 BIBLIOGRAPHY

[11] National Center for Supercomputing Applications. XDataSlice for the X Window
System. http://www.ncsa.uiuc.edu/, 1989.

[12] Peter A. Franaszek, John T. Robinson, and Alexander Thomasian. Concurrency
control for high contention environments.ACM Transactions on Database Systems
(TODS), 17(2):304–345, June 1992.

[13] G.R. Ganger and M.F. Kaashoek. Embedded inodes and explicit grouping: Exploiting
disk bandwidth for small files. InProceedings of the USENIX Winter 1997 Technical
Conference, January 1997.

[14] R. Geist and S. Daniel. A continuum of disk scheduling algorithms.ACM Transac-
tions on Computer Systems (TOCS), 5(1):77–92, February 1987.

[15] Richard Golding, Peter Bosch, Carl Staelin, Tim Sullivan, and John Wilkes. Idle-
ness is not sloth. InProceedings of the USENIX Winter 1995 Technical Conference,
January 1995.

[16] J. Griffioen and R. Appleton. Reducing file system latency using a predictive ap-
proach. InProceedings of the USENIX Summer 1994 Technical Conference, 1994.

[17] J. Griffioen and R. Appleton. Performance measurements of automatic prefetching. In
Proceedings of the International Conference on Parallel and Distributed Computing
Systems, October 1995.

[18] Ed Growchowski. Ibm leadership in disk storage technology.
http://www.storage.ibm.com/technolo/growchows/grocho01.htm, 2000.

[19] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation support for a
chip multiprocessor. InProceedings of the 8th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS),
October 1998.

[20] J.L. Hennessy and D.A. Patterson.Computer architecture: A quantitative approach.
Morgan Kaufmann Publishers, San Francisco, CA, 1996.

[21] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs.
ACM Transactions on Programming Languages and Systems (TOPLAS), 12(1):26–60,
January 1990.

[22] Galen C. Hunt and Michael L. Scott. The Coign automatic distributed partitioning
system. InProceedings of the 3rd USENIX Symposium on Operating Systems Design
and Implementation (OSDI), February 1999.

[23] Proceedings of the 28th International Symposium on Computer Architecture (ISCA).
2001.

BIBLIOGRAPHY 171

[24] Tracy Kimbrel, Andrew Tomkins, R. Hugo Patterson, Brian Bershad, Pei Cao, Ed-
ward W. Felten, Garth A. Gibson, Anna R. Karlin, and Kai Li. A trace-driven com-
parison of algorithms for parallel prefetching and caching. InProceedings of the
2nd USENIX Symposium on Operating Systems Design and Implementation (OSDI),
October 1996.

[25] Kim Korner. Intelligent caching for remote file service. InProceedings of the 10th
International Conference on Distributed Computing Systems (ICDCS), 1990.

[26] David Kotz and Carla Ellis. Practical prefetching techniques for parallel file systems.
In Proceedings of the 1st International Conference on Parallel and Distributed Infor-
mation Systems (PDIS), December 1991.

[27] T. Kroeger and Darrell Long. Predicting file system actions from prior events. In
Proceedings of the USENIX Winter 1996 Technical Conference, January 1996.

[28] T. Kroeger and Darrell Long. The case for efficient file access pattern modeling.
In Proceedings of the 7th Workshop on Hot Topics in Operating Systems (HOTOS),
March 1999.

[29] James R. Larus and Eric Schnarr. EEL: Machine-independent executable editing. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), June 1995.

[30] K.-F. Lee, H.-W. Hon, and R. Reddy. An overview of the SPHINX speech recognition
system.IEEE Transactions on Acoustics, Speech and Signal Processing, 38(1):35–45,
January 1990.

[31] Samuel Leffler, Marshall Kirk MucKusick, Michael J. Karels, and John S. Quarter-
man.The design and implementation of the 4.3BSD UNIX operating system. Addison-
Wesley, 1989.

[32] H. Lei and Dan Duchamp. An analytical approach to file prefetching. InProceedings
of the USENIX Winter 1997 Technical Conference, January 1997.

[33] Mikko H. Lipasti and John Paul Shen. Exceeding the dataflow limit via value pre-
diction. In Proceedings of the 29th Annual ACM/IEEE International Symposium on
Microarchitecture (MICRO), December 1996.

[34] Tara Madhyastha, Garth A. Gibson, and Christos Faloutsos. Informed prefetching of
collective I/O requests. InProceedings of the ACM/IEEE SC99 Conference, Novem-
ber 1999.

[35] M.K. McKusick, W.J. Joy, S.J. Leffler, and R.S. Fabry. A fast file system for UNIX.
ACM Transactions on Computer Systems (TOCS), 2(3):181–197, August 1984.

172 BIBLIOGRAPHY

[36] Todd Mowry, Angela Demke, and Orran Krieger. Automatic compiler-inserted I/O
prefetching for out-of-core applications. InProceedings of the 2nd USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), October 1996.

[37] E.M. Myers. A precise interprocedural data flow algorithm. InConference Record of
the 8th Annual ACM Symposium on Principles of Programming Languages (POPL),
January 1981.

[38] Brent B. Welch Nelson, Michael N. and John K. Ousterhout. Caching in the Sprite
network file system.ACM Transactions on Computer Systems (TOCS), 6(1):134–154,
1988.

[39] John K. Ousterhout, Herve Da Cost, David Harrison, John A. Kunze, Mike Kupfer,
and James G. Thompson. A trace-driven analysis of the UNIX 4.2 BSD file system. In
Proceedings of the 10th ACM Symposium on Operating Systems Principles (SOSP),
December 1985.

[40] M.L. Palmer and S.B. Zdonik. FIDO: A cache that learns to fetch. InProceedings of
the Conference on Very Large Data Bases (VLDB), September 1991.

[41] R. Hugo Patterson.Informed prefetching and caching. PhD thesis, Carnegie Mellon
University, December 1997.

[42] R. Hugo Patterson and Garth A. Gibson. Exposing I/O concurrency with informed
prefetching. InProceedings of the 3rd IEEE International Conference on Parallel and
Distributed Information Systems, September 1994.

[43] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky, and Jim Zelenka.
Informed prefetching and caching. InProceedings of the 15th ACM Symposium on
Operating System Principles (SOSP), December 1995.

[44] C. Reummler and John Wilkes. Disk shuffling. Technical Report HPL-CSP-91-30,
Hewlett-Packard Laboratories, October 1991.

[45] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank Levy,
Brian Bershad, and Brad Chen. Instrumentation and optimization of Win32/Intel ex-
ecutables using Etch. InProceedings of the USENIX Windows NT Workshop, August
1997.

[46] Kyung Dong Ryu and Jeffrey K. Hollingsworth. Linger longer: Fine-grained cycle
stealing for networks of workstations. InProceedings of the ACM/IEEE SC98 Con-
ference, 1998.

[47] K. Salem and Hector Garcia-Molina. Disk striping. InProceedings of the 2nd IEEE
International Conference on Data Engineering, 1986.

BIBLIOGRAPHY 173

[48] Douglas S. Santry, Michael J. Feeley, Norma C. Hutchinson, Alistar C. Veitch,
Ross W. Carton, and Jacob Ofir. Deciding when to forget in the Elephant file sys-
tem. InProceedings of the 17th ACM Symposium on Operating Systems Principles
(SOSP), 1999.

[49] Matthew L. Seidl and Benjamin G. Zorn. Segregating heap objects by reference be-
havior and lifetime. InProceedings of the 8th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS),
1998.

[50] Richard L. Sites and Richard T. Witek.Alpha AXP architecture reference manual,
second edition. Digital Press, Boston, MA, 1995.

[51] Michael D. Smith. Tracing with pixie. Technical Report CSL-TR-91-497, Stanford
University, April 1991.

[52] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors. In
Proceedings of the 22nd International Symposium on Computer Architecture (ISCA),
June 1995.

[53] Inshik Song and Yookun Cho. Page prefetching based on fault history. InProceedings
of the USENIX Mach III Symposium, April 1993.

[54] Amitabh Srivastava and David W. Wall. A practical system for intermodule code
optimization at link time. Journal of Programming Languages, 1(1):1–18, March
1993.

[55] C. Staelin and Hector Garcia-Molina. Clustering active disk data to improve disk per-
formance. Technical Report CS-TR-283-90, Princeton University, September 1990.

[56] J. Gregory Steffan and Todd C. Mowry. The potential for using thread-level data spec-
ulation to facilitate automatic parallelization. InProceedings of the 4th International
Symposium on High-Performance Computer Architecture (HPCA), February 1998.

[57] M. Stonebraker, L. A. Rowe, and M. Hirohama. The implementation of POSTGRES.
IEEE Transactions on Knowledge and Data Engineering, 2(1):125–142, March 1990.

[58] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A. N. Soules, and
Gregory R. Ganger. Self-securing storage: Protecting data in compromised systems.
In Proceedings of the 4th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2000.

[59] Karthik Sundaramoorthy, Zach Purser, and Eric Rotenberg. Slipstream processors:
Improving both performance and fault tolerance. InProceedings of the 9th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), November 2000.

174 BIBLIOGRAPHY

[60] Carl Tait and Dan Duchamp. Detection and exploitation of file working sets. In
Proceedings of the 11th International Conference on Distributed Computing Systems,
May 1991.

[61] Frank Tip. A survey of program slicing techniques.Journal of Programming Lan-
guages, 3(3):121–189, 1995.

[62] Andrew Tomkins, R. Hugo Patterson, and Garth A. Gibson. Informed multi-process
prefetching and caching. InProceedings of the 1997 ACM Sigmetrics International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS),
June 1997.

[63] Kishor S. Trivedi. On the paging performance of array algorithms.IEEE Transactions
on Computers, 26(10):938–947, 1977.

[64] Uresh Vahalia.UNIX internals - The new frontiers. Prentice Hall, 1996.

[65] Werner Vogels. File system usage in Windows NT 4.0. InProceedings of the 17th
ACM Symposium on Operating Systems Principles (SOSP), December 1999.

[66] P. Vonsathorn and S. D. Carson. A system for adaptive disk rearrangement.Software
- Practice and Experience (SPE), 20(3):225–242, 1990.

[67] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
software-based fault isolation. InProceedings of the 14th ACM Symposium on Oper-
ating Systems Principles (SOSP), December 1993.

[68] Chenxi Wang, Jonathon Hill, John Knight, and Jack Davidson. Software tamper re-
sistance: Obstructing static analysis of programs. Technical Report CS-2000-12, Uni-
versity of Virginia, 2000.

[69] Mark Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, July 1984.

[70] M.J. Wolfe. More iteration space tiling. InProceedings of the IEEE Supercomputing
Conference, November 1989.

[71] S. Wu and U. Manber. AGREP - a fast approximate pattern-matching tool. InPro-
ceedings of the USENIX Winter 1992 Technical Conference, January 1992.

	Title
	Abstract
	Table of Contents
	Ch1: Introduction
	Ch2: Background
	Ch3: Approach
	Ch4: Effective design
	Ch5: Low overhead design
	Ch6: Safe design
	Ch7: Experimental setup
	Ch8: Evaluation
	Ch9: Conclusions

